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This article gives a narrative overview of what constitutes cli-
matological data and their typical features, with a focus on
aspects relevant to statistical modeling. We restrict the discus-
sion to univariate spatial fields and focus on maximum likelihood
estimation. To address the problem of enormous datasets, we
study three common approximation schemes: tapering, direct
misspecification, and composite likelihood for Gaussian and non-
Gaussian distributions. We focus particularly on the so-called
‘sinh-arcsinh distribution’, obtained through a specific trans-
formation of the Gaussian distribution. Because it has flexible
marginal distributions – possibly skewed and/or heavy-tailed – it
has a wide range of applications. One appealing property of the
transformation involved is the existence of an explicit inverse
transformation that makes likelihood-based methods straightfor-
ward. We describe a simulation study illustrating the effects of
the different approximation schemes. To the best of our knowl-
edge, a direct comparison of tapering, direct misspecification,
and composite likelihood has never been made previously, and
we show that direct misspecification is inferior. In some metrics,
composite likelihood has a minor advantage over tapering. We
use the estimation approaches to model a high-resolution global
climate change field. All simulation code is available as a Docker
container and is thus fully reproducible. Additionally, the present
article describes where and how to get various climate datasets.
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1. Climate data and their statistical analysis

‘‘Weather is what you get, climate is what you expect’’. That is a colloquial explanation of the
ifference between climatological data and weather data. No mere unusual summer cold spell
ould be used to undercut the latest Summary for Policymakers (SPM) (Masson-Delmotte et al.,
021a) from the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change
IPCC) (Masson-Delmotte et al., 2021b): ‘‘It is unequivocal that human influence has warmed the
tmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere
nd biosphere have occurred’’.
Broadly speaking, there are two categories of observed climate data: aggregated meteorological

ata (e.g., temperature and precipitation data) and climate proxy data, which is typically based on
henology (e.g., start of the cherry blossom, tree rings, ice cores, and sediments). However, the
elationship between observed phenological variables and the climate is not well understood, even
hen time series are dense and contemporary (Güsewell et al., 2017, 2018). Satellite remote sensing
ystems can provide data from both categories (e.g., sea surface temperature or land cover) and at
ifferent levels of spatial and temporal aggregation (NASA, 2021). Many satellite data products are
penly available from different repositories (see Appendix A.1).
A thorough study of climate, temperature, and precipitation is not enough, however, and many

ore variables, such as air pressure, winds, surface radiation, or humidity, are required (see https:/
gcos.wmo.int/en/essential-climate-variables/ for a complete list of the Essential Climate Variables,
CV).
Meteorological data is typically aggregated into 20- or 30-year averages to obtain climatological

ata. Changes are then assessed using moving averages or by comparing two time periods. The
ypically used reference periods for comparing future climate projections to previous observations
re 1951–1980, 1850–1900, and (for variables with recent data only) 1981–2010 (Rhode, personal
ommunication). Similarly, climate scientists often work with seasonal averages, such as the
ecember to February (DJF) or June to August (JJA) averages that reflect climatological changes
etter than the spring and fall seasons.
Data from irregular monitoring networks can be processed to (global) grids or reduced to single

alue indices. Observed climate data is often processed to fine grids using statistical downscal-
ng (Wilby et al., 2004) or so-called reanalysis approaches (Kalnay et al., 1996). Downscaling takes
oarse-resolution information and constructs corresponding higher-resolution maps using statistical
pproaches (Fowler et al., 2007; Poggio and Gimona, 2015). A reanalysis consists of blending sparse,
ast weather observations with a numerical model to derive best guess fields. These fields can
e processed further to derive summary statistics from these weather variables, such as extreme
alues (e.g., minimum winter temperature, maximum 24-hour precipitation). Somewhat counter
ntuitively, subsets of various gridded variables are aggregated to scalar indices, which are then
ften used to describe the state of the climate, for example, a heat wave index (Furrer et al.,
010), the Southern Oscillation Index (Nino3.4) (Trenberth, 1997), the North Atlantic Oscillation
NAO) (Hurrell et al., 2013), and many more.

Atmosphere–Ocean General Circulation Models (AOGCMs) or General Circulation Models (GCMs),
or short, simulate the Earth’s climate by representing its atmosphere–ocean–ice system nu-
erically based on their simplified physical, chemical, and biological properties and interactions
etween the atmosphere, the ocean, and ice. An Earth System Model (ESM) expands on a GCM and
esolves the carbon cycle and possibly other high resolution processes (see Glossary of Masson-
elmotte et al., 2021b). GCMs and ESMs can be run under different scenarios – so-called pathways
incorporating prescribed forcings (e.g., volcanic eruptions, changes in solar radiation, and, most

elevantly, changes in anthropogenic emissions due to fossil fuel combustion and land-use conver-
ion). Hence, pathways provide climate projections for different climate variables but also contribute
o the knowledge of how the Earth’s system responds to the different forcings.

Running a GCM numerically is very expensive and even high-resolution, state-of-the-art mod-
ls cannot resolve local topographic features below ten-kilometer granularity. Obtaining high-
esolution projections requires Regional Climate Models (RCMs), which function similarly to GCMs

ut trade off a much higher spatial resolution by only modeling a fraction of the Earth’s surface.
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Projections from a GCM provide overall boundary conditions, and an RCMs can be interpreted as a
computationally expensive downscaling approach.

The first realistic climate model dates back to the late 1960s and, in the following decades,
ore and more models were developed and used for climate projections. The first AOGCMs

ncorporating realistic geography were run for multi-decadal simulations in the late 1980s. These
arly models differed in their precise implementation as well as in their projections. As a result,
he World Climate Research Programme (WCRP) started a Coupled Model Intercomparison Project
CMIP) in the mid-1990s (Meehl et al., 1997). These and subsequent simulations made significant
ontributions to the IPCC Third Assessment Report (Houghton et al., 2001). CMIP Phase 3 (CMIP3)
as the start of the modern era of open access to multi-model data via the internet (Meehl et al.,
007). The international effort continued and, at the time of writing this article, simulation output
as still being added to the CMIP6 project and planning for CMIP7 was well under way. In the past
ecade, incredible amounts of simulation data have been archived and made publicly available. The
MIP3 repository comprises roughly 31 TB of data; CMIP5 requires 2 PB and CMIP6 will require
ver 5 PB (Meehl, 2019).
The availability of so much data needs to be complemented by appropriate, capable software
ideally open source – for analysis and modeling. AOGCM data are typically stored in Network
ommon Data Form (NetCDF). Satellite or remote sensing data that have been at least marginally
rocessed are often stored in Hierarchical Data Format (HDF), GeoTIFF, or NetCDF. HDF is the de
acto standard for products of NASA’s Earth Observing System (which includes the Aqua, Terra, and
andsat 8 satellites) and GeoTIFF is a public domain metadata standard which allows georeferencing
nformation to be embedded within a TIFF file. NetCDF has a large community of users and is broadly
upported. It is often useful begin by browsing NetCDF files using, for example, ncview (http://met
ora.ucsd.edu/∼pierce/ncview_home_page.html), to get a quick overview of the available variables
nd their ranges. The free software environment, R (R. Core Team, 2021), supports these formats
hrough the rhdf5, hdf5r, raster, terra, ncdf4 and RNetCDF packages. See https://CRAN.R-pro
ject.org/view=Spatial for links and further packages. There are plenty of accessible resources about
how to handle climatological spatial data in R. See, for example, Bivand et al. (2013), https://rspati
al.org and its references, and also Hengl et al. (2015).

In summary, a plethora of climate and other environmental variables are available on regular
grids or with global coverage. These options provide a perfect playground for spatial and spatio-
temporal statistics. Typical tasks involving spatial climatological data include fitting parametric
models, aggregating different data sources, downscaling interpolations, and, to a lesser extent,
predicting the future. The statistical analysis of climatological data is interesting because of its
societal relevance and challenging because of inherent modeling difficulties. However, it seems that
statisticians have a tendency to use climate data to probe statistical models rather than provide
profound climatological results—these have most often been published outside statistics journals,
as evidenced by the reference lists in the last three Assessment Reports of the IPCC.

Working Group I’s contribution to the IPCC’s Sixth Assessment Report (Masson-Delmotte et al.,
2021b) cites not a single article from Spatial Statistics (nor from any other well-known statistics
journals, see Appendix A.2). Although the size of the assessment reports has increased over time
(the current one has close to 4,000 pages), the number of statistical articles cited in them seems to
have decreased. This decrease is probably because statistics journals almost exclusively provide new
methodology without substantially contributing to other fields of study, even if that methodology
was developed to meet the needs of a research question from another field. Scientists, on the
other hand, are more likely to learn about a new statistical methodology if it is used as part of a
substantial contribution to their specialty. Consequently, the original methodological article remains
little cited. Visibility in high quality, applied science journals, such as Spatial Statistics, remains low,
unfortunately, despite many excellent, relevant contributions.

References to climate or climatological data are made in about a quarter of the articles published
in Spatial Statistics (123 out of 528, to end of 2021), but only about two dozen use the term climat*
in the title or abstract. The only two articles to write explicitly about circulation models were
those by Poggio and Gimona (2015) and Castruccio (2016). These numbers mask the substantial
methodological advances revealed in Spatial Statistics that are proving beneficial for climate science.
3
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These advances include classic interpolation methods (Franco-Villoria and Ignaccolo, 2017), machine
learning based prediction (Li, 2021; Pathakoti et al., 2021), modeling or estimating with large
or huge datasets (Kleiber and Nychka, 2015; Barbian and Assunção, 2017), models for bivariate
fields (Salvaña and Genton, 2020; Bevilacqua et al., 2020b), covariance models (Cappello et al., 2021;
Alegría et al., 2021), covariance approximations (Hong et al., 2021), multiresolution approxima-
tions (Nychka et al., 2018; Appel and Pebesma, 2020), Bayesian hierarchical models (Paciorek et al.,
2015; Cameletti et al., 2019; Banerjee, 2020) to name just a few.

After this brief overview of climatological data, we now summarize the maximum likelihood
pproach for large spatial random fields. The summary is quite generic, and although it is presented
or a single random field, most of the statements hold for space–time or multivariate data (pro-
ounced differences occur when deriving asymptotic results). We refrain from summarizing other
stimation and approximation methods and instead refer readers to Heaton et al. (2019), Hong et al.
2021). In Section 2, we address efficient estimation approaches focusing on the approximation
ethods of tapering, direct misspecification, and composite likelihood, all illustrated within the
aussian process framework. There are several situations in which knowledge about the parametric
istribution of observed or simulated climate fields is crucial. One example, is fingerprinting, a
echnique where patterns in models and observed changes are compared, typically based on a
egression type approach (Allen and Tett, 1999). The patterns that best explain the observed data
rovide the strongest support for the causes of the change. Further examples relying on parametric
odels of the dependency structure in climate data are statistical downscaling or the aggregation
f climate data down to single values. The hierarchical model structure developed by Furrer et al.
2007a) was strongly driven by extensive exploratory data analyses involving parametric model
itting.

Of course, in reality, the joint distribution of climate fields is hardly Gaussian, and there are
everal ways to address this. A selection of approaches are: working with differences, i.e., climate
hanges (Furrer and Sain, 2009); the transformation of responses (like log-transformations Damian
t al., 2003; square-root transformations Jeong and Jun, 2015; fourth-root transformations Furrer
nd Sain, 2010), highly flexible mean parametrization (Furrer et al., 2007a), aggregation of several
ariables (Flury et al., 2021), multi-layer hierarchical Bayesian approaches (Sain et al., 2011), the
se of non-Gaussian processes (Xu and Genton, 2016, 2017; Bevilacqua et al., 2021, 2020a), as well
s further approaches and references in Schmidt and Guttorp (2020).
Section 3 extends the Gaussian framework to a particular transformation setting, thus yielding a

o-called sinh-arcsinh process. This process incorporates flexible marginal distributions involving
wo additional parameters that model heavier or lighter tails than those induced by Gaussian
rocesses and/or possible asymmetries. One advantage of the sinh-arcsinh process compared to
ther recent proposals (e.g., Xu and Genton, 2017) is that the transformation involved is explicitly
nvertible, which allows likelihood-based methods of estimation to be applied directly.

In Section 5 we use temperature projections from one particular climate model and emis-
ions scenario and estimate the parameters of the distributions modeled using the approximation
chemes mentioned above. Considerable emphasis is put on explaining how to obtain the data.
he simulation and estimation were implemented in R software, and we provide the analysis via a
ocker image (Boettiger, 2015, docker.com). Hence, the results of this article are fully reproducible.
We conclude our investigation in Section 6, and provide further pertinent information in several

ections of Appendix A.

. Maximum likelihood-type estimation approaches

One well-known assumption made when modeling climate data using spatial processes is to
ssume that the joint distribution of the spatial random vector studied is Gaussian. This unlocks
ome extensively developed statistical theory involving desirable estimator properties and efficient
omputational implementation.
Let {Z(s), s ∈ D ⊂ Rd, d ≥ 1} be a Gaussian random field, with s denoting the spatial location,

nd, typically, d = 2. We assume that the random field can be decomposed as

Z(s) = µ(s) + σZ s(s),
4
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where the mean function µ(s) can be expressed as µ(s) = x(s)Tβ with x(s) a vector of length q
f the observable covariates at location s; β a q-vector of unknown regression coefficients; σ > 0
s the scale parameter, and Z s(·) is a standard Gaussian process. For simplicity, we will assume a
arametric, isotropic setup, which means that the correlation Corr

(
Z s(si), Z s(sj)

)
can be expressed

y a function ρ(hij;ϑ) with hij = ∥si − sj∥ and ρ(0;ϑ) = 1, parametrized by a vector ϑ of length m.
A wide variety of parametric correlation functions are available, see, e.g., Wackernagel (2006).

he parametric family of Matérn functions has received a lot of attention over the past decade
Matérn, 1986; Stein, 1999). We include a white noise component and parametrize the correlation
s

ρ(h;ϑ) =
(1 − λ)

Γ (ν)2ν−1

( h
γ

)ν

Kν

( h
γ

)
+ λI{h=0}, (1)

here γ > 0, ν > 0, 0 ≤ λ ≤ 1, Kν(·) is the modified Bessel function of the second kind of
order ν (Abramowitz and Stegun, 1970), I{h=0} is the indicator function of event h = 0, Γ (·) is
he Gamma function, and ϑ = (γ , ν, λ)T, so m = 3. Another frequently used correlation function
orresponds to the parametric family of Wendland functions (Wendland, 1995, 1998), which has
he characteristic of being compactly supported

ρ(h;ϑ) = (1 − λ)I{h<γ }

(
1 −

1
γ

)2(w+1)
Pw

( h
γ

)
+ λI{h=0}, w = 0, 1, 2, . . . (2)

where ϑ = (γ , λ)T and Pw(·) is a polynomial of order w. See Appendix A.3 for explicit examples
of w = 1 and w = 2, corresponding to Wendland1 and Wendland2, respectively. They are special
cases of a more general family called Generalized Wendland functions (Bevilacqua et al., 2019).

Note that the particular parametrization regarding the noise effect (λI{h=0} component of ρ)
mplies a more robust estimation of σ than a decomposition according to the spatial scales (Cressie,
993, pp 112–113).
Now, considering z as one realization of the process Z(s) at locations {s1, . . . , sn} ⊂ D (for

implicity of the exposition, mutually distinct) and the matrix X with rows x(si)T, the log-likelihood
f the parameter vector ψ = (βT,ϑT, σ )T ∈ Rq+m+1 given z is

l(ψ; z) = l(β,ϑ, σ ; z)

= −
n
2
log(2πσ 2) −

1
2
log detΩ (ϑ) −

1
2
(σ−1(z − Xβ))TΩ (ϑ)−1(σ−1(z − Xβ)), (3)

here the correlation matrix Ω (ϑ) = [ρ(hij;ϑ)]ni,j=1. A vector ψ̂ML that maximizes l(·; z) is called a
aximum Likelihood (ML) estimate and is found via numerical optimizers.
One of the simplest implementations of a numerical optimizer evaluates l(·; z) for a feasible set

f parameters {ψj ∈ Ψ , j = 1, 2, . . .}, with Ψ being the parameter space of ψ, and then selecting
he one that achieves the highest likelihood. A more appealing subclass of numerical algorithms
s made up of gradient-based algorithms, such as steepest-ascent, which iteratively updates its
stimate based on the gradient of l(ψ; z). See Nash (2014) for a thorough overview.
The profile likelihood approach is based on gradient algorithms and has the advantage of splitting

he optimization of ψ into two steps, first estimating ϑ and then β. To begin with, let ϑ = ϑ0 for
ny plausible and thus admissible values. Next, a unique closed-form solution for β̂ that maximizes
(·; z) is

β̂(ϑ0) =
(
XTΩ−1(ϑ0)X

)−1 XTΩ−1(ϑ0)z. (4)

his estimate corresponds to the generalized least squares estimate of β when Corr(Z) = Ω (ϑ0).
e now consider (4) as a function of ϑ and rewrite (3) to

lp(ϑ, σ ; z) = l(β̂(ϑ),ϑ, σ ; z) = −
n
2
log(2πσ 2) −

1
2
log detΩ (ϑ) −

1
2σ 2 z

TP(ϑ)z, (5)

here P(ϑ) = Ω−1(ϑ) − Ω−1(ϑ)X(X′Ω−1(ϑ)X)−1X′Ω−1(ϑ). The function lp(ϑ, σ ; z) is known as
he profile log-likelihood function of (ϑ, σ 2) (Waller and Carlin, 2010) and can be optimized by
5
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numerical algorithms as well. Finally, β̂ML = β̂(ϑ̂ML). As climate fields are typically large, the
computation of P(ϑ) is costly and thus, in practice, the spatial structure is often neglected when
estimating fixed effects. That means that β̂LS =

(
XTX

)−1 XTz is used instead of (4). Accordingly, the
profile log-likelihood is based on the vector of residuals e = z − Xβ̂ and is approximated by

l̃p(ϑ, σ ; e) = −
n
2
log(2πσ 2) −

1
2
log detΩ (ϑ) −

1
2σ 2 e

TΩ−1(ϑ)e. (6)

This approach can be refined by adding a couple of iterations over Eqs. (4) and (6).
The major disadvantage of gradient algorithms is the computational burden of evaluating the

(profile) log-likelihood at each step, which can be prohibitive even for medium-sized samples as we
need to evaluate the determinant of Ω (ϑ), and solve linear systems involving Ω (ϑ). The number
of flops required for solving those linear systems is up to O(n2), with O(n3) required for storage.

e therefore present three techniques that aim to ease the computational burdens present when
odeling spatial climatological processes using an ML approach.

.1. Tapering

One method of mitigating the computational burden of gradient algorithms is the Tapering
pproach (TA) (Furrer et al., 2006). This induces sparseness in the correlation matrix Ω (ϑ) by
apering the correlation function with a compactly-supported correlation function ρδ(h), i.e., with
δ(h) = 0 if h > δ, and δ > 0 being the taper range. The resulting tapered correlation function is
hen defined as

ρT (h;ϑ, δ) = ρ(h;ϑ)ρδ(h), (7)

hich is also valid because the product of two valid covariance functions is also valid. The associated
apered covariance matrix is therefore defined by the element-wise product (or Schur product) of
(ϑ) and a matrix T(δ) = [ρδ(hij)]ni,j=1. There exist efficient Cholesky decomposition algorithms for

parse matrices (see Furrer and Sain, 2010, for example). Replacing Ω (ϑ) with Ω (ϑ) ⊙ T(δ) in (6)
esults in a pseudo-likelihood whose maximization is computationally feasible for large datasets,
ut this comes with the shortcoming of biased estimates (Kaufman et al., 2008). An extension of
he TA known as the double tapering approach can be used to overcome this drawback, since it
ields unbiased estimations by tapering both the model and the log-likelihood’s sample covariance
atrix. However, this too comes with the downside of requiring the full inverse of the tapered
ovariance matrix, which compromises computational efficiency (Kaufman et al., 2008).
Although the TA is unable to deliver unbiased estimates compromising the interpretability of the

esulting estimates, its most compelling characteristic is associated with prediction. This means that
sing the same tapered model for prediction, the resulting root mean squared errors are very close
o those of the correct underlying model (Furrer et al., 2006), even in non-Gaussian or multivariate
ettings (Bachoc et al., 2020; Bevilacqua et al., 2019).
The selection of the taper range δ is crucial. One must strike a balance between a small value that

implies faster calculation and a larger value that reduces the bias by being able to better capture
the spatial dependency. As a rule of thumb, 50 to 100 locations should be within the taper range.

2.2. Deliberate misspecification

A simpler approach than TA considers directly a compactly-supported correlation structure
for Ω (ϑ), regardless of the process’s true underlying correlation structure, and fixing the range
parameter to a convenient value. Due to sparse matrices, this Deliberate Misspecification (DM) ap-
proach leads to computational benefits similar to those of TA, but without honoring the underlying
covariance structure of the process being studied.
6
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2.3. Composite likelihood based on pairs

Another efficient method for easing the computational burden of the classic ML approach is
he weighted Composite Likelihood (CL) method based on pairs. This is one of a general class of
L estimating methods (Lindsay, 1988; Varin et al., 2011) based on the likelihood of marginal or
onditional events, and it has been successfully applied in recent years for estimating complex
odels and/or handling large datasets (see, e.g., Baddeley, 2017; Fronterrè et al., 2018; Lie and
idsvik, 2021 and many more as indicated in Appendix A.2).
As outlined by Lindsay et al. (2011), the choice of a suitable CL function should be driven

y the statistical and computational considerations of estimation problem at hand. For Gaussian
andom fields in particular, there is a clear computational advantage in using CL based on pairs
f observations rather than using other types of CL methods (Eidsvik et al., 2013; Stein et al.,
004). Specifically, the weighted CL method based on pairs uses the log-likelihood functions lij(ψ)
nd li|j(ψ) associated with the bivariate random vector (Z(si), Z(sj))T and the random variable
(si)|Z(sj) = zj, respectively. The weighted marginal pairwise log-likelihood (wplM ) and the
eighted conditional pairwise log-likelihood (wplC ) functions are given by

wplM (ψ; z) =

n∑
i=1

n∑
j̸=i

wijlij(ψ), wplC (ψ; z) =

n∑
i=1

n∑
j̸=i

wijli|j(ψ), (8)

espectively, where wij are suitable positive weights. The associate estimators are defined as ψ̂a =

rgmaxψ wpla(ψ), for approaches a = M, C .
In general, wpla, a = M, C estimation is expected to be less statistically efficient than the

L estimation, and the role of weights wij is to minimize that loss. Using the theory of optimal
stimating equations (Heyde, 1997), it can be seen (Bevilacqua et al., 2012) that determining the
ptimal weights requires the calculation of the inverse of an n(n − 1) × n(n − 1) matrix, which is
omputationally more demanding than what is required for an ML estimation. Some approximations
f the optimal weights have been proposed in the literature (e.g., Li and Sang, 2018; Pace et al.,
019). However, calculating these kinds of weights remains computationally demanding for large
atasets. Assuming symmetric weights, (8) simplifies to

wplM (ψ; z) = 2
n−1∑
i=1

n∑
j=i+1

wijlij(ψ), wplC (ψ; z) =

n−1∑
i=1

n∑
j=i+1

wij
(
2lij(ψ) − li(ψ) − lj(ψ)

)
, (9)

here li(·), i = 1, . . . , n is the marginal log-likelihood.
One symmetric weight function based on distances that has been successfully applied by

ifferent authors (Bai et al., 2014; Feng et al., 2014; Heagerty and Lele, 1998) is given by

wij(k) =

{
1, ∥si − sj∥ < k,
0, otherwise,

(10)

here k ∈ R+ is an arbitrary distance greater than the minimum distance between the locations.
his kind of weight function allows a certain percentage (depending on k) of the total number
f pairs to be eliminated and provides a clear computational advantage over a constant weight
unction. Additionally, it has been shown that these kind of weights improve the statistical efficiency
f both the wpla, a = M, C methods compared to the use of constant weights (see, for instance, Joe
nd Lee, 2009; Davis and Yau, 2011; Bevilacqua et al., 2012).
Via their extensive simulation study Bevilacqua and Gaetan (2015) showed that wplC slightly

utperforms wplM , from a statistical efficiency viewpoint, when estimating the parameters of
aussian random fields. For this reason, we will focus on the wplC estimation, which we refer to as
L in what follows.

.4. Asymptotics

Two well-defined asymptotic frameworks exist with which to study the limiting distribution
f estimators under a spatial framework. These are known as increasing-domain asymptotics and
7
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infill-domain asymptotics (Cressie, 1993). Under increasing-domain asymptotics, we consider an
expanding sampling region with increasing distances between locations; the ML and CL estimators
are consistent and asymptotically normal under weak conditions (Mardia and Marshall, 1984;
Cressie and Lahiri, 1996; Bevilacqua and Gaetan, 2015). On the other hand, under infill-domain
asymptotics, the sampling region is fixed and sampling gets denser. The theoretical results here
are more limited, stating, among other things, the existence of two types of parameters: those that
are consistently estimable, known as microergodic parameters, and those that are not (Kaufman
and Shaby, 2013; Bevilacqua et al., 2019). The microergodic parameters have similar limiting
distributions to those under an increasing-domain asymptotic.

In an infill-domain asymptotic framework the taper function needs to be as differentiable at the
rigin as the covariance function and some other minor assumptions (Furrer et al., 2006; Kaufman
t al., 2008; Stein, 2013). For a fixed range, a high smoothness also implies stronger tapering, and
hus, we often opt for Matérn covariance functions with smoothness parameter ν ≤ 0.5, a Spherical
ovariance taper, with 0.5 < ν ≤ 1.5, a Wendland1 and with 1.5 < ν ≤ 2.5, a Wendland2. In an
ncreasing-domain asymptotic framework, on the other hand, the taper range needs to increase, but
e only have weak restrictions on the taper function (Bachoc et al., 2020).
The theoretical justification for the DM approach is discussed in Bevilacqua et al. (2019) for an

nfill-domain asymptotic framework.
In practice, we have a single set of observations, i.e., one finite ‘‘n’’. This type of setting does not

ictate the asymptotic scheme and picking the scheme with the best properties in the particular
etting is legitimate. For climate science, we believe that infill-domain asymptotics are more
ntuitive and mimic well the situation of increasing the resolution of climate models.

. Sinh-arcsinh distribution

The sinh-arcsinh (SAS) distribution was introduced by Jones and Pewsey (2009) as a general
eans of generating classes of distributions containing symmetric and asymmetric cases with
arying tail-weights, and thus it is well suited for modeling climatological data. Let us consider
he continuous, strictly monotonic function Sa,b : R → R defined as

Sa,b(y) = sinh
(
b sinh−1(y) − a

)
, (11)

ith b > 0 and a ∈ R. Given a symmetrical random variable U , a so-called generating random
ariable, with the probability density function (pdf) fU and the cumulative distribution function (cdf)
U , we define Y s

α,κ , an SAS random variable, as

Y s
α,κ := S

−
α
κ , 1κ

(U) = sinh
(
κ−1(sinh−1(U) + α)

)
(12)

with a closed form inverse

U = sinh
(
κ sinh−1(Y s

α,κ ) − α
)

= Sα,κ (Y s
α,κ ). (13)

The pdf and cdf of the SAS random variable are

fY s
α,κ

(y) = κ

(
1 + S2α,κ (y)

1 + y2

)1/2

fU
(
Sα,κ (y)

)
and FY s

α,κ
(y) = FU

(
Sα,κ (y)

)
.

One particularly appealing property of the SAS transformation is that its parameters are clearly
interpretable. The parameters α and κ can be interpreted as skewness and kurtosis parameters, re-
spectively. If they are studied separately, the parameter α ∈ R controls the distribution’s skewness.
In particular, α > 0 and α < 0 yield a right-skewed and a left-skewed distribution, respectively. The
parameter κ controls the tail-weights, where tail-weights decrease with increasing κ . Specifically,
κ < 1 and κ > 1 yield heavier and lighter tails than the Gaussian distribution, respectively.
Additionally, the special case where α = 0 and κ = 1 leads to the identity transformation,

s
i.e., yielding the generating random variable Y0,1 = U .

8
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Fig. 1. SAS density for (a) α = 0 and κ = 0.4, 0.8, 1, and 1.2, (b) κ = 1 and α = 0.4, 0.8, 1, and 1.2.

One important case is when the generating random variable is standard Gaussian in which the
df of the SAS random variable Y s

α,κ , is given by

fY s
α,κ

(y) = κ

(
1 + S2α,κ (y)

2π
(
1 + y2

))1/2

exp
(

−
1
2
S2α,κ (y)

)
. (14)

Fig. 1 shows the flexibility of the SAS distribution for increasing values of both the tail parameter
(with fixed α = 0) and the skewness parameter (with fixed κ = 0) using a standard Gaussian
generating distribution.

This paper applies the SAS transformation to a zero mean unit variance, isotropic Gaussian
random field Z s(s) =

{
Z s(s), s ∈ D ⊂ Rd

}
with correlation function ρ(·;ϑ). Specifically, we define

s
α,κ (s) =

{
Y s

α,κ (s), s ∈ D ⊂ Rd
}
with Y s

α,κ (s) := S
−

α
κ , 1κ

(
Z s(s)

)
, a standard SAS random field with the

marginal density given in (14).
A location and scale transformation gives a non-standard SAS random field Yα,κ =

{
Yα,κ (s), s ∈

⊂ Rd
}
, defined as

Yα,κ (s) = µ(s) + σY s
α,κ (s), (15)

where µ(s) ∈ R is a spatially varying location parameter that, as in Section 2, can be expressed as
µ(s) = x(s)Tβ, and σ > 0 is a scale parameter. The mean and variance of this process are

E
(
Yα,κ (s)

)
= µ(s) +

σ sinh(α/κ)e1/4
√
8π

(
K κ+1

2κ
(1/4) + K 1−κ

2κ
(1/4)

)
,

Var
(
Yα,κ (s)

)
=

σ 2 cosh(2α/κ)e1/4
√
32π

(
K κ+2

2κ
(1/4) + K 2−κ

2κ
(1/4)

)
−

1
2

−
(
E(Yα,κ (s))

)2
,

where Kζ is the modified Bessel function of the second kind of order ζ (Jones and Pewsey, 2009).
Since the transformation S

−
α
κ , 1κ

(·) is monotonic, such that
∫

∞

−∞
S2
−

α
κ , 1κ

(t)ϕ(t)dt < ∞ with ϕ(·),
he standard Gaussian density, Y s

α,κ (s) can be expressed as

Y s
α,κ (s) =

∞∑
j=0

ξj(α, κ)Hj
(
Z s(s)

)
j!

,

here Hj(·), j = 0, 1, 2, . . . are the jth order (probabilistic) Hermite polynomials (Abramowitz and
Stegun, 1970). A closed form expression for the coefficients ξj(α, κ) can be found in Appendix A.4.
In addition, the correlation function of the SAS random field can be written as

ρY s
α,κ

(h;ϑ) =

∞∑
j=1

ξj(α, κ)2

j!
ρ(h;ϑ)j. (16)

Using (16), it can easily be shown that mean-square continuity and degrees of mean-square
differentiability can be inherited from the generating Gaussian random field Z s(s). In particular,
9
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Y s
α,κ (s) is m-times mean-square differentiable if Z s(s) is m-times mean-square differentiable. As a

consequence, flexible correlation functions, like the Matérn model, can be used to parametrize the
mean square differentiability of the SAS random field, as in the Gaussian case.

Given {s1, . . . , sn} ∈ D a set of distinct locations, let Ω = [ρ(∥si − sj∥;ϑ)]ni,j=1, the correlation
atrix associated with a parametric correlation model of the process Z s(s). Let Sα,κ (Z s) be the com-
onentwise SAS transformation of the elements of the vector Z s, where Z s

=
(
Z s(s1), . . . , Z s(sn)

)
T is

Gaussian random vector, where Z s(si) = Sα,κ

(
σ−1(yi−µi)

)
for i = 1, . . . , n. Thus, the log-likelihood

unction associated to the random vector Y =
(
Yα,κ (s1), . . . , Yα,κ (sn)

)
T is given by

l(ψ; y) = −
n
2
log(2πσ 2) −

1
2
log detΩ (ϑ) −

1
2
Sα,κ

(
σ−1(y − Xβ)

)
TΩ (ϑ)−1Sα,κ

(
σ−1(y − Xβ)

)
+ n log(κ) −

1
2

n∑
i=1

(
log

(
1 + S2κ,α

(
σ−1(yi − xT

i β)
))

− log
(
1 +

(
σ−1(yi − xT

i β)
)2))

,

(17)

here Sα,κ (y) = [Sα,κ (yi)]ni=1 and ψ = (βT,ϑT, σ , κ, α)T ∈ Rq+m+3. If κ = 1 and α = 0, (17)
simplifies to the Gaussian log-likelihood (3).

4. Simulation

We ran a simulation study to illustrate the behavior of the four estimation methods presented
here using sixteen synthetic climatological settings. We present the distribution of biases and the
computational efficiency of the four discussed estimation approaches.

4.1. Simulation framework

We consider a common baseline framework of isotropic SAS random fields, with the underlying
Matérn correlation model defined in Eq. (1) with γ = 0.05, scale parameter σ = 1, range
parameter γ = 0.05, and mean function µ(s) = 1 + 0.1 cos(sx) + 0.2 cos(sy), s ∈ [0, 1]2. A full
factorial design including four factors is considered on this common framework, defining the sixteen
synthetic frameworks shown in Table 1 and from which 200 replications are drawn. The Smoothness
factor relates to the process’s mean square differentiability. The ‘high’ setting sets ν = 2.3 and
λ = 0, mimicking temperature fields. The ‘low’ setting sets ν = 0.5 and adds a small white
noise component, with λ = 0.1, mimicking precipitation fields (Furrer et al., 2007a). The Gridded
factor relates to the locations’ spatial configuration, in gridded or non-gridded fields, where gridded
fields are given by one realization of a simple inhibition process with minimum distance equal
to 0.01 (Cressie, 1994), mimicking the minimum separation between the stations of a monitoring
network. A Size factor relates to the sample size, with small and large size levels of 784 and
3025, respectively. The fourth and final Distribution factor relates to the random field’s underlying
distribution, which is an SAS distribution with skewness and kurtosis parameters of α = 0 and
κ = 1 (i.e., Gaussian) or α = 0.5 and κ = 0.8, respectively.

Each field is then estimated using the four approaches described above: ML, TA, DM, and CL. We
assume a Matérn correlation structure with known, fixed smoothness parameters for ML, TA, and
CL, i.e., ϑ = (γ , λ)T. For TA, the tapering function is selected using the infill-domain asymptotics
framework described in Section 2.4, with the taper range set to half of the true effective range,
i.e., δ = 0.075 and δ = 0.143 for low and high smoothness, respectively. The same correlation
model is used for DM.

A general optimization task is done by tuning memory allocation for TA and DM, and by selecting
the parameter k from Eq. (10) for the CL approach. For the Gaussian frameworks, the parameters are
estimated using the profile-likelihood (6) with the initial ϑ0 set to the true value. All the parameters
for the SAS random fields are estimated jointly based on (17). A box constraints optimizer method
is used (L-BFGS-B), with the same initialization for all the estimation methods.
10
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Table 1
Specifications of the simulation frameworks.
Framework Smoothness Gridded Size Distribution

1 Low Yes 784 Gaussian
2 High Yes 784 Gaussian
3 Low No 784 Gaussian
4 High No 784 Gaussian
5 Low Yes 3025 Gaussian
6 High Yes 3025 Gaussian
7 Low No 3025 Gaussian
8 High No 3025 Gaussian
9 Low Yes 784 SAS
10 High Yes 784 SAS
11 Low No 784 SAS
12 High No 784 SAS
13 Low Yes 3025 SAS
14 High Yes 3025 SAS
15 Low No 3025 SAS
16 High No 3025 SAS

Fig. 2. Bias of β̂0 . The solid orange solid lines represent the mean value calculated using each estimation method. Blue
dashed lines represent the mean value for each estimation method according to their smoothness setting. Single boxplots
are by underlying distribution. The remaining factors (Gridded and Size) were collapsed since no relevant differences were
found.

All computing was performed using R software (R. Core Team, 2021), version 4.1.1, on an
AMD Ryzen 9 5900X × 24 threads computer, with 128 GB RAM. The code employed was writ-
ten according to the principles of research transparency and reproducibility (see Appendix A.5)
and relied heavily on the spam (Furrer et al., 2021), geoModels (Bevilacqua et al., 2018), and
optimParallel (Gerber and Furrer, 2019) R software packages.

4.2. Results

The results of our simulation study are shown in Figs. 2–6. For each parameter, we identified
the two relevant factors that best described the differences between the estimation methods. The
remaining factors were collapsed to make visualization easier.

Fig. 2 shows the bias for β̂0. Overall, the estimation methods led to similar biases. Regarding the
dispersion of the biases, there was a clear pattern according to smoothness, with a smaller spread at
low level of smoothness than at high smoothness. The high smoothness SAS frameworks were the
most challenging ones: ML, TA, and DM frameworks demonstrated a considerable positive shift of
11
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Fig. 3. Bias of σ̂ . The solid orange lines represent the mean value calculated using each estimation method. Blue dashed
lines represent the mean value for each sample size by estimation method. Single boxplots are by underlying distribution.
The remaining factors (Gridded and Size) were collapsed since no relevant differences were found.

their medians. In this framework, CL stood out as the most robust approach. The results for β1 and
2 biases were similar, but with a slight negative median bias for ML and TA in the high smoothness
AS frameworks.
Fig. 3 shows the bias of σ̂ with similar features to those seen in Fig. 2, e.g., similar overall

ehavior of their medians, with CL having the lowest one; higher spreads for the high smoothness
rameworks; and the high smoothness SAS frameworks representing the most challenging scenarios.
owever, for all four methods the distribution of bias is strongly right-skewed.
Fig. 4 presents the square root of the absolute bias for the range γ̂ standardized by the true

arameter γ . The absolute biases do not differ greatly from the raw ones because approximately
6% of them are positive. DM was excluded since we deliberately fixed the range parameter. In
his figure, all three estimation methods present markedly different behavior. ML exhibits the best
verall results for medians and dispersion, without any clearly observable difference between the
rameworks presented. CL shows markedly larger estimates, especially for the smaller sample size.
inally, TA was expected to return biased estimates, which were mild in the previous results, but
ave now deteriorated and led to extremely wide ranges. An increase in the sample size mitigates
he most severe biases.

Fig. 5 shows the bias of λ̂. A clear difference can be seen between the low and high smoothness
rameworks across the four estimation methods, with the latter being better estimated, in general.
ithin those high smoothness frameworks, CL exhibits considerably worse behavior for low sample

izes, presenting a raw bias of 0.1 when the true parameter is 0. This flaw is overcome as the sample
ize increases. For the low smoothness frameworks, CL again exhibits particularly bad behavior for
ow sample sizes, which is again corrected as the sample size increases. Next, there is an expected
mprovement associated with the sample size increase in the low smoothness scenario with ML, in
ddition to having both boxplots almost centered in 0. An interesting pattern can be seen for TA
nd DM in the low smoothness frameworks: an increase in sample size shifts the boxplots off 0,
xhibiting narrower but more biased results.
All estimation methods provided mostly consistent estimates of the SAS fields’ kurtosis and

kewness. The distribution of the skewness parameter is stronger right-skewed for ML and CL
ompared to TA and DM.
Fig. 6 summarizes the relative consumption of time (a) and peak memory (b) required by the

ifferent approximate methods in comparison to ML, and split by sample size (small to the left and
arge to the right of the central line). Most importantly, the three other estimation methods were
ubstantially quicker than ML. CL presents the best relative reduction in time needed, especially
12
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Fig. 4. Square root of the absolute bias of γ̂ standardized by the true parameter γ . The solid orange solid lines represent
he mean value calculated using each estimation method. The blue dashed lines represent the mean value for each
stimation method by smoothness setting. Single boxplots are by sample size. The remaining factors (Gridded and
istribution) were collapsed since no relevant differences were found. Note the different scales.

Fig. 5. Bias of λ̂. Solid orange solid lines represent the mean value calculated using estimation method. Blue dashed
ines represent the mean value by parameter setting for each estimation method. Single boxplots are by sample size. The
emaining factors were collapsed since no relevant differences were found.

or the large sample size frameworks. For the low sample size, the joint median of the other three
istributions is around 0.2, and it is 0.05 for the large sample size, meaning that they required
ust 20% and 5% of the time required by ML. Only a small proportion of estimates required more
ime when using TA and DM (3.6% and 0.4%, respectively). Each of the approximate estimation
ethods in panel (b) of Fig. 6 exhibits a markedly different pattern for the given sample sizes. For
mall sample sizes, the methods generally consumed more peak memory than ML, whereas they
ere substantially lower than ML when using larger sample sizes. TA and DM showed the largest
eductions, with a joint median of approximately 0.4; the median was 0.81 for CL.

.3. Discussion

We have presented an overview of the statistical estimation approaches’ behaviors via a sim-
lation study of sixteen synthetic frameworks mimicking different climatological datasets. We
13
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Fig. 6. Violin plots showing the relative consumption of (a) time and (b) peak memory by the approximate estimation
methods in comparison to ML, split by sample size (small left and large right).

addressed the interpretability of their resulting estimates by analyzing their bias distributions;
we addressed their computational performance by looking at their consumption of time and peak
memory. One limitation to this simulation study was its inability to differentiate between effects
due to the underlying distribution and those due to the fitting procedure of our full factorial
design. Both effects are aligned on their levels and therefore the effect can be only estimated
jointly. Regarding the factors studied, one that never stood out as a main component to explain the
differences between the estimates was Gridded. The better noise estimation capabilities associated
with non-gridded fields seems to vanish when limiting the minimum distance between locations
(at least with the chosen distance).

Regarding the interpretability of our estimates, none of the approximate methods stood out as a
potential overall preferred alternative to ML, but some approximate methods could be used for some
specific frameworks. CL performed well for the fixed effect and scale parameter estimations, even
outperforming ML, and delivered less biased estimates at the cost of a small increase of variability.
However, CL performed worse for the range and noise estimations over noisy frameworks when
dealing with a low sample size. TA slightly outperformed CL within the low smoothness frameworks,
delivering less variable estimates for the noise parameter with a slight increase in their bias, with
the exception, of course, of the range estimates. DM’s performance can be summarized as slightly
worse than TA: in general, it showed marginally more dispersed and biased estimates, with the
extra limitation of not being able to provide range estimates. Finally, ML was the best approach for
range and noise estimations over low sample-size frameworks, but it showed subpar performance
for the fixed effects and scale parameters in high smoothness SAS frameworks.

Regarding computational performance, there was a clear pattern due to sample size. For small
sample sizes, the approximate methods and mechanisms ended up requiring more memory and
time than ML (up to 1.4 times more than ML). This is because approximation methods are tuned
to work well with large and massive sample sizes, which was also seen in their substantially lower
peak memory consumption (41% of the time required by ML). Since CL is mainly used as part of the
GeoFit function in GeoModels, we can expect to observe higher memory consumption. In general,
the approximate methods required less computation time, with greater relative reductions for the
larger sample size (as low as 5% of the time required by ML).

In summary, based on this simulation study, any recommendations on whether or not to use
approximate methods must reference sample size and the smoothness of the process being studied.
If the sample size is considerably large, then the CL approach stands out as a rapid, robust alternative
to ML, delivering interpretable estimates. With a medium sample size, any restrictions on computing
time or peak memory consumption, which would be exceeded using ML, point to the TA approach
14
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Fig. 7. (a) JJA average of near-surface air temperature (in degrees Kelvin) (years 1–20), (b) the projected change in near-
urface air temperature (JJA, years 131–150 minus 1–20) (in degrees Kelvin). (Data: CESM2 model with experimental
brupt quadrupling of CO2).

hat provides relatively acceptable interpretability, except for the range parameter. TA offers a direct
arameter trading-off bias and computational gains. Aside the range estimates, our experience
hows that the choice of δ has much less effect on the estimates compared to k of CL.

. Illustration

This section applies the three approximate estimation approaches to a gridded, high resolution,
lobal climate field.
We use data from the CMIP6 repository, which can be downloaded for free via the web

nterface https://esgf-node.llnl.gov/search/cmip6/. Details on the downloading process are available
n Appendix A.6. Climate projections have been calculated based on the Community Earth System
odel Version 2 (CESM2) (Danabasoglu et al., 2020), made available to the public by the USA’s
ational Center for Atmospheric Research (NCAR). We chose near-surface air temperature (denoted
s TAS) as our climatological variable, based on a GCM experiment constrained as follows. The
imulation started with a carbon dioxide (CO2) concentration set to the level from the global annual
ean 1850 value. Then an instantaneous quadrupling of the atmospheric CO2 concentration was

mposed with no further changes over the 150 years of simulation. Climate scientists use a setup
ike this to evaluate the climate model’s true climate sensitivity and to diagnose the strength of
arious feedbacks. Furthermore, this experiment characterizes the radiative forcing that arises from
n increase in atmospheric CO2 as well as changes that arise indirectly due to warming (Pascoe et al.,
020).
Data is provided in its native 0.9 × 1.25 finite volume grid, resulting in 192 × 288 latitude–

ongitude grids. To avoid numerical instabilities, both boundary latitude rows have been eliminated.
he left panel of Fig. 7 shows the summer seasonal climate average at the beginning of the
imulation (average of June, July, and August, JJA, over years 1–20). The right panel shows the
rojected change in TAS towards the end of a 150-year simulation (average JJA, over the years
30–150). We then fit an SAS random field (15) to this dataset.
As we have data on the entire globe, we use a great circle distance (Furrer et al., 2007b) with a
endland2 covariance function that is valid on the sphere (Guinness and Fuentes, 2016). We fit an

AS model to the data with a taper, deliberate misspecification and a pairwise composite likelihood
pproach, denoted TA, DM and CL, respectively. A profile likelihood approach was adopted by first
etting Ω equal to the identity matrix to estimate mean, which was modeled by an additive model
cubic smoothing splines of sin and cosine of the latitude with a total of 18.74 degrees of freedom).

Table 2 summarizes the parameter estimates. The uncertainty estimates were approximated
sing the inverse of the Hessian matrix at the maximizer. To ensure the numerical stability of
15
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Table 2
Parameter estimates for the three different approximate methods, where available, standard error estimates are given in
parentheses.
Method γ σ λ α κ

TA 24.86 (11.213) 0.17 (0.002) 0.00 (0.167) 0.02 (0.002) 0.53 (0.008)
DM 6 (fixed) 0.17 (0.003) 0.00 (0.033) 0.02 (0.002) 0.53 (0.002)
CL 22.78 0.18 0.00 0.02 0.53

Fig. 8. (a) Marginal densities of the fitted models. The black line is a kernel density estimate of the spatial residuals. (b)
ovariance functions based on parameter estimates.

his task, we down-sampled the data to 40,000 locations. For CL, no direct uncertainty measure
s available for the model considered.

The left panel of Fig. 8 shows the marginal densities resulting from the parameter estimates
iven in Table 2. The resulting SAS density is a good match for the spatial residuals summarized by
kernel density estimate. The right panel of Fig. 8 gives the resulting covariance functions based on
he parameter estimates. Note that although the resulting covariances of TA and DM are virtually
dentical, a range estimate is available for TA.

In summary, the three different estimation approaches yield similar fits and confirm that the
hoice of the estimation approach may be driven by the user aptness of the methodology and by
he availability of the implemented code of the methodology.

. Concluding remarks

The present article illustrated how to bridge the gap between statistical methodology and
nference with regards to climate data. Within this contribution we would like to encourage readers
o take advantage of the huge amounts of openly available climate data or to collaborate more often
ith climate scientists. We hope that this paper will also provide some guidance and starting points

or spatial statisticians at all levels.
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ppendix A

.1. Links to data repositories

The table below provides a selective list of repositories of climate, meteorological, and environ-
ental datasets. All links were accessed on January 5th 2022.

NCAR Climate Data (Satellite Data Products):
https://climatedataguide.ucar.edu/data-type/satellite-data-products

Satellite imagery and other satellite-derived datasets linked to Southern Ocean:
https://www.soos.aq/index.php?option=com_sppagebuilder&view=page&id=57

Free Satellite Imagery Sources:
https://eos.com/blog/free-satellite-imagery-sources/

CMIP data browser (different phases):
https://esgf-node.llnl.gov/search/cmip3, https://esgf-node.llnl.gov/search/cmip5 and
https://esgf-node.llnl.gov/search/cmip6 (several mirrors exist).

Data provided by Google Earth Engine:
https://developers.google.com/earth-engine/datasets/ with download described at
https://developers.google.com/earth-engine/guides/exporting

See also the generic search link https://datasetsearch.research.google.com/.

A.2. Paper and citation counts

The table below provides the search strings used at https://www.scopus.com (using the Uni-
ersity of Zurich’s institutional subscription) for some of the statements in the text. The number
orresponds to the number of articles found (Jan. 5th, 2022).

Query string Number of articles found
SRCTITLE (‘‘spatial statistics’’) PUBYEAR < 2022 528
SRCTITLE (‘‘spatial statistics’’) PUBYEAR < 2022

ALL (climat*) 123
SRCTITLE (‘‘spatial statistics’’) PUBYEAR < 2022

TITLE-ABS-KEY(climat*) 26
SRCTITLE (‘‘spatial statistics’’) PUBYEAR < 2022

ALL (‘‘Climate model’’) 21
SRCTITLE (‘‘spatial statistics’’) PUBYEAR < 2022

ALL (‘‘circulation model’’) 2
SRCTITLE (‘‘spatial statistics’’) PUBYEAR < 2022

ALL (*GCM) 2
SRCTITLE (‘‘spatial statistics’’) PUBYEAR < 2022

TITLE-ABS-KEY (‘‘composite *likelihood’’) 16
SRCTITLE (‘‘spatial statistics’’) PUBYEAR < 2022
TITLE-ABS-KEY (‘‘taper*’’) 6
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To count the number of citations in Masson-Delmotte et al. (2021b) for articles published in
patial Statistics, the Journal of Statistical Software, the Journal of the Royal Statistical Society: Series
, the Journal of the American Statistical Association, Statistical Science, Annals of Applied Statistics,
nd Environmental and Ecological Statistics, respectively, we used the following approach (Linux
csh 6.21.00):

wget https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
pdftotext IPCC_AR6_WGI_Full_Report.pdf
grep -c -e 10.1016/j.spasta -e 10.18637/jss -e 10.1111/rssb -e 10.1080/01621459 -e
’10.1214/*-STS’ -e ’10.1214/*-AOAS’ -e 10.1007/s10651 ar4_wg1.txt

Because DOIs were not consistently used for (Solomon et al., 2007) we used:

wget https://www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf
pdftotext ar4_wg1_full_report-1.pdf ar4_wg1.txt
grep -w ’Stat\.’ ar4_wg1.txt

Manual checks were performed for both approaches.

.3. Correlation functions with compact support

Spherical: ρ(h;ϑ) = (1 − λ)I{h<γ }

(
1 −

3
2
h
γ

+
1
2
h3

γ 3

)
+ λI{h=0},

Wendland1: ρ(h;ϑ) = (1 − λ)I{h<γ }

(
1 −

h
γ

)4(4h
γ

+ 1
)

+ λI{h=0},

Wendland2: ρ(h;ϑ) = (1 − λ)I{h<γ }

(
1 −

h
γ

)6(35
3

h2

γ 2 + 6
h
γ

+ 1
)

+ λI{h=0}, where ϑ = (γ , λ)T,

γ > 0, 0 ≤ λ ≤ 1.

A.4. Coefficients of Hermite polynomials ξj(α, κ)

A standard SAS random field Y s
α,κ (s) can be expressed by an infinite sum of Hermite polynomials

Y s
α,κ (s) = S

−
α
κ , 1κ

(
Z s(s)

)
=

∞∑
j=0

ξj(α, κ)Hj
(
Z s(s)

)
j!

,

here the coefficients ξj(α, κ) depend on Y s
α,κ (s). According to Jones and Pewsey (2009), we have

Y s
α,κ (s) = S

−
α
κ , 1κ

(
Z s(s)

)
=

1
2

(
eα/κ (Z s(s)+(Z s(s)2+1)1/2)1/κ −e−α/κ (Z s(s)+(Z s(s)2+1)1/2)−1/κ

)
.

Let Hj(·), where j = 0, 1, 2, . . . is the jth order (probabilistic) Hermite polynomial, defined as

Hj(z) = ez
2/2

(
−d
dz

)j

e−z2/2.

Hj(·) can be also represented by the so-called Hermite–Kampé de Fériet series

Hj(z) = j!
[j/2]∑
r=0

z j−2r (−1)r

2r (j − 2r)!r!
.

herefore, the coefficients ξj(α, κ) are given by,

ξj(α, κ) = E
(
Y s

α,κ (s)Hj(Z s(s))
)

= j!
[j/2]∑ (−1)r I(α, κ, j, r)

r+1
√ ,
r=0 2 2π (j − 2r)!r!
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where, using Wolfram Mathematica, we obtain

I(α, κ, j, r) =

∫
∞

−∞

e−zs(s)2/2zs(s)j−2r

×
(
eα/κ (zs(s) + (zs(s)2 + 1)1/2)1/κ − e−α/κ (zs(s) + (zs(s)2 + 1)1/2)−1/κ)dzs(s)

= (−1)3+j−2rcα,κ,1 − cα,κ,2 + cα,κ,1aα,κ,1

+ (−1)2+j−2rcα,κ,2aα,κ,1 + 2−2−j+2rcα,κ,3aα,κ,2

− (−0.5)2+j−2rcα,κ,3aα,κ,3

ith

aα,κ,1 = cosh
(
2α
κ

)
+ sinh

(
2α
κ

)
aα,κ,2 = sec

(
π

2κ
−

jπ
2

+ πr
)

+ sec
(

π

2κ
+

jπ
2

− πr
)
aα,κ,1

aα,κ,3 = sec
(

π

2κ
+

jπ
2

− πr
)

+ sec
(

π

2κ
−

jπ
2

+ πr
)
aα,κ,1

cα,κ,1 = e−α/κ2−0.5+1.5/κ+j/2−rΓ

(
1 + j
2

+
1
2d

− r
)

× 2F2

(
1
2

−
1
2d

, −
1
2d

; 1 −
1
d
,
1 − j
2

−
1
2d

+ r;
1
2

)
cα,κ,2 = e−α/κ2−0.5−1.5/κ+j/2−rΓ

(
1 + j
2

−
1
2d

− r
)

× 2F2

(
1
2

+
1
2d

,
1
2d

; 1 +
1
d
,
1 − j
2

+
1
2d

+ r;
1
2

)
cα,κ,3 =

e−α/κπΓ (1 + j − 2r) 2F2
( 1+j

2 − r, 1 +
j
2 − r; 3+j

2 −
1
2d − r, 3+j

2 +
1
2d − r; 1

2

)
κΓ

( 3+j
2 −

1
2d − r

)
Γ

( 3+j
2 +

1
2d − r

) ,

here 2F2(·) is a special case of the generalized hypergeometric function pFq(·) (Abramowitz and
tegun, 1970).

.5. Source files

R source files are available in the git repository https://git.math.uzh.ch/reinhard.furrer/j.spasta.2
22.100596.
The README.txt file gives an overview of the available files as well on how to run them. The

epository also provides a ‘Dockerfile’ to run the simulation in a fully reproducible environment.

.6. Details for accessing the dataset in Section 5

The CMIP6 data are publicly available and can be downloaded for free via the web interface htt
s://esgf-node.llnl.gov/search/cmip6/. The menu on the left of that page efficiently helps to restrict
he search parameters. For example, we chose our dataset using the following tags (top to bottom):
ctivity: CMIP; Source ID: CESM2; Experiment ID: abrupt-4xCO2; Table ID: Amon; Variable: tas.
epending on the selection, the aggregation can be changed using either the Frequency or Table ID.
or projections over many decades, the output may be provided in several files. There may also be
ore than one experiment possible for a specific selection, as indicated by the variant label. For a
etailed description of the file naming convention, see Taylor et al. (2018), Brunner et al. (2020),
r (Pascoe et al., 2020).
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