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Abstract. Diabetic kidney disease is a serious complication of diabetes
and one of the leading causes of chronic and end-stage kidney disease
worldwide. The clinical course and response to therapy is complex and
heterogeneous both between and over time within individuals. There-
fore it is extremely important to derive even more in-depth informa-
tion on what characterizes its pathophysiology and pattern of disease
progression. Statistical models can help in this task by understanding
the interconnections among variables clinically considered to character-
ize the disease. In this work we propose to use Bayesian networks, a
class of probabilistic graphical models, able to identify robust relation-
ships among a set of variables. Furthermore, Bayesian networks are able
to include expert knowledge in the modeling phase to reduce the uncer-
tainty on the phenomenon under study. We provide some evidence that
the synergy between data and expert prior information is a great source
of valuable help in gaining new knowledge about Diabetic Kidney Dis-
ease.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized
by high levels of blood sugar (glucose) resulting from the body’s resistance to
insulin or its reduced secretion. The number of adults suffering from T2DM
in Europe varies between countries but it is expected to increase overall from
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52.8 in 2011 to 69 million by 2045 (www.heartstats.org, accessed June 2023).
About 30–40% of affected individuals develop diabetic kidney disease (DKD),
a devastating complication that reduces quality as well as duration of life and
imposes an enormous burden on health care budget. In developed countries DKD
is the leading cause of end stage renal disease [1].

For many years kidney disease in type 2 diabetes was considered to mimic
kidney disease in type 1 diabetes, a somewhat “homogenous” disorder primar-
ily driven (at least in early stage) by genetic predisposition and quality of
metabolic control. However recently it became evident that it is much more
complex and multifactorial due to different comorbidities more prevalent in this
elderly population (like hypertension) and deregulations in a large number of dif-
ferent biological pathways including metabolic, hemodynamic, and inflammatory
processes have been described [2]. A consequence of this complexity is massive
inter-individual and longitudinal intra-individual heterogeneity of pathophysi-
ology on the molecular level the phenotype (i.e. clinical presentation) and the
response to specific therapy is observed. Understanding these mechanisms and
their interactions cross sectionally and over time is crucial for improving clinical
care and developing targeted therapies and interventions to prevent or delay the
onset and slow the progression of DKD. With better profiling of patients there
is an increasing need of a new understanding on the framework of relationships
involving some of the variables and their interactions used to judge the state of
a patient with DKD and support selection of appropriate therapy.

In this work we propose a probabilistic graphical model, namely the Bayesian
network, to identify the network of relationships among the selected variables of
the disease pathophysiology of DKD. Ideally the results should give a consensus
to the theoretical path of pathophysiology, and when combined with expert
knowledge or per se, should improve the information on the actual relationships
among the different considered factors. Specifically, by estimating a Bayesian
network model we can contribute in

– evaluating the strength of the well-known relationships on DKD;
– proving new insights on new relationships emerged from the data on patients;
– identifying differences that could be imputed to the specific therapy.

The paper is structured as follow: in Sect. 2 we introduce the study conducted
to derive the data used in the analyses and the statistical approach developed
to address the proposed objectives, in particular how to include prior knowledge
available from the literature and experts to produce more informative models;
then in Sect. 3 we present the main results achieved in the content of DKD.
Finally, in Sect. 4 we propose some concluding remarks about issues requiring
further researches.

2 Materials and Methods

2.1 The PROVALID Study

The data used in this work were provided by the PROVALID study (“PROspec-
tive cohort study in patients with type 2 diabetes mellitus for VALIDation

www.heartstats.org


300 D. Slanzi et al.

of biomarkers”), a prospective observational study that recruited over 4.000
patients with T2DM in five European countries with normal, mild or moder-
ately reduced kidney function. Patients were followed for at last 4 years and
variables holding information on clinical data, laboratory values and medication
were collected on an annual basis. For a more complete description of the study
and the available data we refer to [3,4]. The disease trajectories (as assessed by
changes in eGFR, a measure of renal excretory capacity) were highly variable in
the PROVALID participants even under stable therapy [5]. Next to drug adher-
ence and environmental factors, heterogeneity in pathophysiology is a very likely
explanation for this finding. In order to systematically approach this problem
we defined two populations of patients:

– RASi only, population 1: a population of patients that was continuously
treated with agents that block the renin angiotensin system, the current stan-
dard of care for at least 4 years.

– Drop-in, population 2: a selection of patients to whom other agents were
added on top of RASi therapy by their clinicians in order to improve metabolic
control and/or DKD (sodium glucose transporter 2 inhibitors, i.e. SGLT2is,
glucagon like peptide 1 receptor agonists, i.e. GLP1as, or the mineralocorti-
coid receptor antagonists, i.e. MCRAs.

The definition of these two different populations can help in addressing the aim
of identifying differences that could be attributed to the specific therapy.

Among the over one hundred variables collected within the PROVALID data,
thirteen available from routine clinical care visits and considered important by
physicians were selected. After a preprocessing of the data to remove incom-
plete cases and to adjust skewed distribution by means of log transformation
if appropriated, the selected variables in the two populations are described in
Table 1. We point out that the data which we analyzed are datapoints, i.e. we
did not consider the longitudinal component of the data. From the Table we
can highlight that differences on the mean value of some variables emerge when
comparing the two populations, meaning that therapy seems to have an effect
to those variables.

After the selection of the relevant variables, clinical expertise was used to
construct an interaction network based on pathophysiology understanding. This
network, considered a theoretical framework is presented in Fig. 1. Then, the
interaction network and the suspected strength of the interactions between vari-
ables was considered as a benchmark, and compared with a purely data driven
approach to determine if the latter could improve our understanding of the DKD
complex interactions. However confounding of this network by changing in treat-
ment that affects target variables with or without altering disease pathology is
an obvious weakness.

2.2 The Bayesian Networks

To derive the network of relationships among the selected variables of the disease
pathophysiology of DKD, we propose to build Bayesian networks (BNs) [6,7].
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Table 1. Comparison of main selected variables between the two populations. Mean
± standard deviation are reported. p-value refers to a t-student test to evaluate the
statistical difference between the two populations.

Variable Overall n = 1288 RASi only n = 798 Drop-in n = 490 p-value

SBP - Systolic Blood Pressure 135.52 ± 14.93 136.84 ± 15.28 133.37 ± 14.08 0.000

DBP - Diastolic Blood Pressure 77.61 ± 9.35 77.70 ± 9.76 77.46 ± 8.65 0.636

BG - Blood Glucose 154.00 ± 56.96 154.00 ± 59.30 153.99 ± 52.99 0.996

HBA1C - Triglycerides HbA1c 7.50 ± 1.30 7.43 ± 1.34 7.61 ± 1.24 0.016

TOTCHOL - Total Cholesterol 178.86 ± 47.73 181.83 ± 49.20 174.03 ± 44.88 0.004

HDLCHOL - HDL Cholesterol 48.29 ± 13.69 49.76 ± 14.45 45.89 ± 11.98 0.000

STRIG - Serum triglycerides 184.61 ± 121.89 178.07 ± 122.52 195.26 ± 120.23 0.014

SPOT - Serum Potassium 4.51 ± 0.51 4.53 ± 0.51 4.49 ± 0.52 0.204

HB - Hemoglobin 13.76 ± 1.56 13.46 ± 1.50 14.23 ± 1.54 0.000

SALB - Serum Albumin 4.49 ± 0.42 4.42 ± 0.41 4.60 ± 0.41 0.000

CRP - C reactive protein (log) −1.23 ± 1.14 −1.22 ± 1.17 −1.24 ± 1.10 0.666

BMI - Body Mass Index 31.92 ± 5.59 31.12 ± 5.09 33.23 ± 6.11 0.000

UACR - Urinary albumin/creatinine ratio (log) 2.53 ± 1.75 2.65 ± 1.69 2.35 ± 1.83 0.003

Bayesian networks provide a method for the representation and reasoning of
uncertainty and have been widely used in the medical field [8–10]. Specifically,
a BN for a set of random variables X = {X1, . . . , Xp} (in this case p = 13) is
identified by

– a network structure G, a directed acyclic graph (DAG) where nodes represent
the variables X of the system and the directed arcs between nodes represent
the probability dependences between them,

– a set of parameters, representing conditional probability distributions
P (Xi|Pa(Xi)) associated to each variable Xi, i = 1, . . . , p, where Pa(Xi)
are the variables that correspond to the parents of Xi in the DAG (i.e. the
nodes with an arc pointing towards Xi).

The global distribution of the variables X is decomposed into the local distribu-
tions of the individual variables Xi as

P (X) =
p∏

n=1

P (Xi|Pa(Xi)) (1)

The process of estimating a BN is called learning and typically involves two
main steps: (1) the structure learning to identify the topological structure, i.e.
which arcs are present in the graph and therefore which probabilistic relation-
ships are supported by the data, and (2) the parameter learning to learn the
conditional probability distributions that regulate the strength of the relation-
ships.

There are many approaches in literature to estimate BNs from the data [11]:
in this work we will focus on a Search & Score strategy which uses a score
function in order to compare the structures of the network and then selects the
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Fig. 1. Theoretical framework. Red arcs reflect quite known relationships between the
associated variables whereas blue arcs reflect relationships which are less clear from
clinical point of view. Signs indicate the direction of the associations.

structure which better fits the data. Specifically, we develop structure learning
by means of hill-climbing search procedure and a BDe score [6]. Furthermore,
to reduce the impact of the noise present in the data, model averaging learning
techniques can be used to improve the reliability of structure learning [12]. The
process consists in:

– perform bootstrap resampling, i.e. re-sample the data k times using bootstrap
and perform structure learning separately on each of the resulting samples,
thus collecting k DAGs;

– calculate arc strength, i.e. compute the frequency with which each arc appears
in those k graphs deriving an “average” consensus DAG by selecting those
arcs that have a frequency above a certain threshold t.

In this work we fix the number of bootstrap replications to k = 200 and threshold
to t = 0.5 (selection of only arcs with strength > 0.5). The average BN model
built within this process should be less sensitive to noisy data and typically
should produce more accurate predictions for new observations [8].

One more characteristic on structure learning is that BN can include prior
knowledge available from the literature and the practice of the discipline to
produce more informative models and to overcome the inherent noisiness and
variability of data. This is possible by means of whitelisted arcs: they represent
well-known dependencies which should be forced to be present in the graph. In
this work we estimate several BNs by including and excluding prior knowledge
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Table 2. Measures of graphical differences. Expert refers to BN where the structure
represents the expert knowledge, Data only refers to BN learned using data only, Data
+ Prior refers to BN learned by using both data and expert knowledge.

Overall population

Num. arcs Av. MB size Av. neighb. size Missing priors (FN) TP TN BIC

Expert 32 6.15 4.92 - - - −51504.84

Data only 28 7.23 4.31 25 7 21 −50990.75

Data + Prior 49 10 7.54 0 32 17 −51044.46

representing the theoretical framework of interconnections among the selected
variables in DKD. The prior information was delivered by study physicians in the
form of 32 prior relationships (whitelisted arcs) derived from the pathophysiology
theoretical framework in Fig. 1.

Last, BNs are derived both considering the whole dataset (Overall popu-
lation) to improve the experts understanding of the pathophysiology complex
interactions, and the therapy-specific populations (Rasi and Drop-in popula-
tions) to identify if any difference can be imputed to added agents.

3 Results

To evaluate the strength of the well-known relationships on DKD and how data
can provide insights on new relationships in patients on therapy, we introduce
some measure of graphical differences. In Table 2 we provide the number of
arcs (Num. arcs), the average Markov Blanket size (Av. MB size), the average
neighborhood size (Av. neighb. size), the number of missing priors (FN), the
number of confirmed priors (TP) and the number of new arcs emerging from data
(TN) with respect to the “Expert” network built with only the 32 whitelisted
arcs suggested by expert clinicians. Last, a BIC measure was provided for each
BN in order to compare the fit to the data. BNs in Table 2 are learned using
data referred to the whole dataset (Overall population).

From the results we can see that the “Data only” BN have a less number
of arcs, meaning that data provide relationships that should be considered as
robust. By comparing them with the expert prior whitelisted arcs, we highlight
that the 7 TP arcs detected by a purely data driven approach have a strength
ranging from 1 to 0.910 meaning that the associated prior relationships are
highly confirmed also from an empirical point of view (some examples are: SBP
→ DBP, DBP → HB and BG → HBA1C, all with associated strength equal to
1). Furthermore, 21 new emerging arcs are achieved: some of them describe prior
relationships but with a reversed directions (for example, HDLCHOL → BMI
with strength equals to 1 or HBA1C → BMI with strength equals to 0.975), but
many others can provide new insights on the DKD pathophysiology network as,
for example SALB → HB (strength = 1), SALB → UACR (strength = 1) or
CPR → BMI (strength = 1).
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When looking at the results of the BN learned by using prior expert infor-
mation, we see that the number of emerged new relationships is 17 and most of
them are the same as in the network built using only data.

To understand if therapies affect the results, the same procedure was sepa-
rately developed in the Rasi only and Drop-in populations. Results are presented
in Table 3. The BNs built without prior information within the Drop-in popu-
lation seems to present less arcs with respect to Rasi only population. Only 3
prior relationships are confirmed in both populations (SBP → DBP, DBP → HB
and BG → HBA1C, all with strength equals to 1) but what emerges is that the
new relationships found in Rasi only population are mainly different compared
to Drop-in population. In Fig. 2 the arcs which can be attributed to therapy are
shown. Specifically, black solid lines represent relationships which are present in
both Rasi only and Drop-in populations, blue dashed lines represent relationships
which are present in Rasi only population but not in Drop-in population and red
solid lines represent relationships which are present in Drop-in population but
not in Rasi only population. When introducing prior information, despite the
high number of common whitelisted arcs which can also put constraints in the
search approach, there are again differences that can be attributed to the ther-
apies as shown in Fig. 3. Most of them confirm the results obtained by a purely
data-driven approach, but some new relationships also emerge. This suggest that
expert prior information can guide and contribute to a better understand on the
interconnection network among the variables involved in the disease.

To evaluate how expert knowledge merged with information directly
extracted from the data is able to better identify the pattern of pathophysi-
ology, we calculate the predictive accuracy of the BNs estimated from data with
and without prior information in the different populations in terms of correla-
tion between the observed and the predicted value for all the variables. This
predictive accuracy is achieved by using 10-fold cross-validation [13]. 10-fold
cross-validation is a model validation technique that assesses how well a statisti-
cal model accurately predict the behavior of new observations; for each variable
we compute the correlation between the observed and predicted pairs and this
quantity is called predictive correlation. The predictive correlations for all the
variables are reported in Table 4. Both Data and Data + Prior BNs predic-
tions for all the considered variables outperform the predictive correlations in
the Expert network for all the populations, meaning that data can provide a
very valuable source of additional information to better understand unknown
mechanisms in the DKD. Furthermore, in differentiating by therapies we can
also achieved specific directions of intervention: for example, the value of the
predictive correlation of CRP is about 0.2 for Rasi only population and about
0.4 for Drop-in population meaning that the interconnections found in this last
BN are able to better describe what influences the value of CRP.
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Table 3. Measures of graphical differences among populations. Expert refers to BN
where the structure represents the expert knowledge, Data only refers to BN learned
using data only, Data + Prior refers to BN learned by using both data and expert
knowledge.

RASi only population

Num. arcs Av. MB size Av. neighb. size Missing priors (FN) TP TN BIC

Expert 32 6.15 4.92 - - - −31963.79

Data only 23 5.69 3.54 27 5 18 −31640.04

Data + Prior 44 8.77 6.77 0 32 12 −31693.48

Drop-in population

Num. arcs Av. MB size Av. neighb. size Missing priors (FN) TP TN BIC

Expert 32 6.15 4.92 - - - 19505.76

Data only 19 4.15 2.92 26 6 13 −19285.05

Data + Prior 44 9.54 6.77 0 32 12 −19335.19

Fig. 2. Structural differences imputed to therapy - Data only

Fig. 3. Structural differences imputed to therapy - Data + Prior
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Table 4. Measures of prediction performance. Data only refers to BNs learned using
data only, Data + Prior refers to BNs learned by using both data and expert knowledge,
and Expert refers to BNs where the structure represents the expert knowledge and only
the parameters of the BN are estimated from data.

Overall population Rasi population Drop-in population

Data only Data + Prior Expert Data only Data + Prior Expert Data only Data + Prior Expert

SBP 0.424 0.424 0.385 0.419 0.416 0.390 0.417 0.415 0.337

DBP 0.416 0.422 0.416 0.430 0.426 0.425 0.369 0.422 0.381

BG 0.569 0.569 0.559 0.579 0.573 0.563 0.553 0.546 0.542

HBA1C 0.614 0.613 0.595 0.628 0.628 0.607 0.567 0.563 0.566

TOTCHOL 0.583 0.575 0.133 0.598 0.586 0.116 0.567 0.550 0.268

HDLCHOL 0.595 0.596 0.215 0.625 0.622 0.277 0.510 0.500 0.091

STRIG 0.578 0.574 0.291 0.577 0.572 0.294 0.544 0.555 0.278

SPOT 0.324 0.319 0.057 0.329 0.332 0.098 0.301 0.280 -0.040

HB 0.404 0.396 0.193 0.368 0.365 0.213 0.426 0.421 0.120

SALB 0.272 0.280 0.110 0.208 0.200 0.091 0.270 0.311 0.135

CRP 0.325 0.321 0.228 0.231 0.248 0.179 0.469 0.480 0.328

BMI 0.356 0.354 0.262 0.359 0.347 0.321 0.379 0.378 0.104

UACR 0.253 0.248 0.082 0.282 0.289 0.098 0.072 0.146 0.021

4 Concluding Remarks

In this work we provide evidence on how BNs are effective and efficient models
for the identification and the quantification of complex structures in medical
practice and research. Specifically, by using average Bayesian network models
for therapy-specific data we can provide an intuitive qualitative and quanti-
tative description (in the form of a DAG) of the relationships that link the
variables of the theoretical framework. Furthermore, this methodological strat-
egy has the advantage of allowing the integration of prior expert knowledge into
model estimation, which is quite common in clinical settings. From the results of
the analysis, we can highlight how the data can provide a source of information
able to increase the knowledge of experts in finding complex relationships in the
path of pathophysiology for the disease. In this sense, data and experts are both
complementary and collaborative: experts can corroborate what emerges from
data and data can help experts find new insights. Moreover, by digging inside
the estimated structure in the two populations we should be able to identify
differences that could be imputed to the specific therapy in order to support
the selection of appropriate interventions for patients treated with that therapy.
Further researches can be developed to improve the efficiency of the estimated
models by adding new set of variables (not strictly related to the pathophysiology
perspective such as the set of risk factor medications, the clinical readout fea-
tures, family history information, etc.) or move to a BN classifier (or a BN-based
predictive model) with the main emergent relationships to derive a personalized
probabilistic outcome.
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