THE SHELL MIDDENS OF THE BAY OF DAUN:
ENVIRONMENTAL CHANGES AND HUMAN IMPACT ALONG
THE COAST OF LAS BELA (BALOCHISTAN, PAKISTAN)
BETWEEN THE 8TH AND THE 5TH MILLENNIUM BP

Paolo Biagi¹, Tiziano Fantuzzi² and Carlo Franco³

¹ Department of Asian and North African Studies, Ca’ Foscari University Venice, Ca’ Cappello, San Polo 2035, I-30125 Venezia, Italy; pavelius@unive.it
² Department of Humanities, Ca’ Foscari University Venice, Palazzo Malcanton Marcorà, Dorsoduro 3245, I-30123, Venezia, Italy; tiziano.fantuzzi@gmail.com
³ Department of Asian and North African Studies, Ca’ Foscari University Venice, Ca’ Cappello, San Polo 2035, I-30125 Venezia, Italy; utinum@gmail.com

Abstract

The discovery of shell middens around the Bay of Daun and Lake Siranda (Las Bela, Balochistan) shows that groups of prehistoric gatherers settled along the coasts of Las Bela at least since the last two centuries of the 8th millennium BP. The radiocarbon dating of the Daun sites indicates that the exploitation of the mangrove resources was not continuous, but took place mainly during two distinct periods of the 7th and 5th millennia BP. The presence of Neolithic shell middens along the northern coasts of the Arabian Sea reinforces the impression that this part of the Indian Ocean was first settled during the Middle Holocene when the sea level had stabilized. The radiocarbon dates obtained from marine and mangrove shells from the Tharro and Makli Hills in Lower Sindh, suggest that coastal seafaring began already in this period.

Key words: Arabian Sea, Balochistan, Las Bela, shell middens, radiocarbon chronology, mangrove environment, monsoon cycles.

PREFACE

The first shell middens of the coast of Las Bela (Balochistan, Pakistan) were discovered in January 2000 during a visit paid by one of the authors (P.B.), together with Professor A.R. Khan of the Department of Geography, Karachi University, to Daun, a small bay some 15 km south of Gadani promontory. Given the importance of the finds, surveys aimed at the discovery of more middens were promoted by the Italian Archaeological Mission in 2004 and 2008, along the shores of the same bay, and the high marine terrace that extends south of it (Biagi, 2004; 2011a; Biagi and Franco, 2008).

Little is known of the prehistory of Las Bela (Shafler, 1986). Most of the surveys have been carried out in the regions of the interior (Stein, 1943; Rai kes and Dyson, 1961; Khan, 1964; Rai kes, 1967–1968; Fairservis, 1975; Khan, 1979b; De Cardi, 1983; Flam, 1998; Franke-Vogt, 1999), while no attention has ever been paid to this part of the northern Arabian Sea coast. From this territory A.R. Khan (1979a:5) reports the presence of prehistoric finds near Kunari Nallah, between Gadani and Phuari headlands, whose Perh limestones are rich in flint nodules exploited since at least the beginning of the Mesolithic (Abbas, 1976:7; Khan, 1979a:12; Naseem et al., 1996–1997:129).

During the surveys carried out in the 1970s, Professor A.R. Khan discovered a few prehistoric sites west of the Hab River mouth (Khan, 1979a: map 1); he also pointed out the importance of the Windar River delta (Khan, 1979b:75) and Khur-
kera plain, where the Chalcolithic/Bronze Age mound of Kot-Bala (Balakot) is located (Dales, 1974; 1981). Contrary to any expectation prehistoric sites were never discovered during the physical geography reconnaissance of Las Bela coastal zone (Snead, 1969), the only province of Balochistan reached by the summer monsoon rains, rich in water supplies (Pithawalla, 1953:33).

According to the chronicles of the classical authors the coasts of ancient Gedrosia (present-day Makran) were inhabited by fish-eaters in Hellenistic times, and also during the 1st century AD (see for instance Eggermont, 1975:64, referring to Arrian’s Indica; McCrindle, 1973:195), while the coast of Las Bela was settled by the Oretai, “an ethnic group distinguished by strongly primitive traits and culturally similar to the Ichthyophagi” (Longo, 1987:12). M.U. Hasan (2002:28) reports that fishing hamlets of “cabins supported by bones of whale” were still visible along the coast of Makran during the mid-1970s, as they were in the 4th century BC (Hughes-Buller, 1996:36; see also Holdich, 2002:160).

The ethno-archaeological study of Las Bela fishermen (Belcher, 1999; Desse and Desse-Berchet, 2005) has pointed out the importance of fishing in the subsistence of the villagers settled between Gadani promontory and the Hab River mouth (Minchin, 1983:94). The current evidence highly contrasts with the archaeological data, given that traces of prehistoric fishermen settlements along the entire coast of Balochistan are very scarce (Belcher, 2005; Desse et al., 2005), despite the many surveys carried out in the region (Stein, 1931; 1943; Dales, 1982; Besenval and Sanlaville, 1990; Sanlaville et al., 1991; Dales and Lipo, 1992; Besenval and Didier, 2004).

Sonari, a shell midden located at the top of the eastern high terrace of the Hab River close to its flowing into the Arabian Sea, is the only site to have yielded net-sinkers obtained from beach pebbles (Biagi, 2004:fig.6). Quite an opposite situation is known from the Oman Peninsula, where all the Holocene shell middens so far excavated show the importance of fishing in the subsistence strategy of their inhabitants (Uerpmann and Uerpmann, 2003; Cleuziou, 2004; Biagi and Nisbet, 2006; Lézine et al., 2010:12; Charpentier et al., 2012).

**GEOGRAPHICAL SETTING**

The shell middens of Daun Bay are distributed over a roughly rectangular area between 24°59’18.08”–25°00’27.29” Lat. N. and 66°42’19.35”–66°43’07.22” Long. E. They lie partly along the sand beach around and south of the bay, some 6m above the maximum level reached by the tide, partly on the top of the Pleistocene marine terrace extending south of a small headland (Snead, 1966:47; 1967; 1969:38; Snead and Frishman, 1968:1673). Their distance from the present shoreline varies from 60 to 700 m. Most sites consist of heaps or scatters of fragmented *Terebralia palustris* gastropods (Biagi, 2004; Biagi and Franco, 2008), although other mangrove and marine species are represented, among which are *Telescopium telescopium* and *Anadara uropygmelana*.

According to their location the sites can be divided in five main groups (Fig. 1):

1) Daun 4, 5, 6, 7, 8 and 9, are located at the top of the marine terrace at an average altitude of some 30 m. (Fig. 2);

2) Daun 100, 101, 102, 103, 104, 105, 106, 107 and 108, north-west of group 1), along the sand beach below the above terrace;
3) Daun 110, 111, 112, 113 and, slightly to the north Daun 114, 115, 116 and 117, lie close to the sand shoreline, north-east of the small promontory (Fig. 3);

4) Daun 1, 10, 2 and 118, are located slightly to the north-east, not far from the south-eastern shore of the bay (Fig. 4);

5) Daun 3 and 119, adjacent to each other not far from the eastern shore of the bay (Fig. 5).

The sites and their assemblages

The Daun shell middens are of different shape and dimension. They yielded assemblages consisting almost exclusively of chipped and coarse stone tools (Table 1). Among the 7th millennium BP sites, Daun 1 is a large midden (Fig. 6) on the surface of which fifty pitted crushing stones with pecked round or oval grooves on one or both surfaces were recorded (Figs 7 and 8). In contrast Daun 10 yielded only one crushing stones and one hammer-stone. The site, well sheltered between volcanic rocky outcrops, consists of scatters of very small fragments of T. palustris shells (Fig. 9) on the surface of which many chipped and coarse stone artefacts were collected (Fig. 10).

The chipped stone industries of the 7th millennium BP sites are obtained from flint available from Perh limestone formations that outcrop from Gadani and Phuari headlands, some 15 km north of the bay (Naseem et al., 1996–1997:fig.1). The artefacts have been produced on the spot, as shown by the presence of narrow bladelet cores.
Table 1  
Daun: main characteristics of the lithic assemblages and other finds

<table>
<thead>
<tr>
<th>Site number</th>
<th>Lithic materials</th>
<th>Blocks, Pre-cores and Core types</th>
<th>Tool types</th>
<th>Coarse ground tools</th>
<th>Pottery</th>
<th>Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daun 1</td>
<td>Gadani red flint, chert, limnoquartzite, sandstone</td>
<td>Small blocks; subconical and subcylindrical cores</td>
<td>Trapeze, bladelets, flake(lets)</td>
<td>Crushing stones, hammerstone</td>
<td>Prehistoric</td>
<td>1</td>
</tr>
<tr>
<td>Daun 2</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 3</td>
<td>Gadani red flint, banded chert</td>
<td>Small block</td>
<td>Flakes, retouched blade</td>
<td>Crushing stone, net-weight</td>
<td>None</td>
<td>4</td>
</tr>
<tr>
<td>Daun 4</td>
<td>Gadani red flint</td>
<td>Small block</td>
<td>None</td>
<td>None</td>
<td>Prehistoric</td>
<td>3</td>
</tr>
<tr>
<td>Daun 5</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Net-weight, tomb, hearths?</td>
<td>Historic?</td>
<td>3</td>
</tr>
<tr>
<td>Daun 6</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Daun 7</td>
<td>Chert</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Islamic</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 8</td>
<td>Chert</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Quern</td>
<td>3</td>
</tr>
<tr>
<td>Daun 9</td>
<td>Gadani red flint, chert, limnoquartzite, sandstone, limestone</td>
<td>Small tested blocks; subcylindrical, prismatic cores</td>
<td>Lunate, side scraper</td>
<td>Crushing stone, hammerstone</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>Daun 10</td>
<td>Gadani red flint, limnoquartzite, limestone</td>
<td>Small tested block</td>
<td>Flakelets</td>
<td>None</td>
<td>Prehistoric</td>
<td>3</td>
</tr>
<tr>
<td>Daun 103</td>
<td>Chert</td>
<td>Micro-core</td>
<td>Truncation on bladelet</td>
<td>None</td>
<td>Prehistoric</td>
<td>3</td>
</tr>
<tr>
<td>Daun 104</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Daun 105</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Daun 106</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 107</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 108</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 109</td>
<td>Quartzite</td>
<td>None</td>
<td>Side scraper</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Daun 110</td>
<td>Gadani red flint, limnoquartzite, limestone</td>
<td>Small tested block</td>
<td>Flakelets</td>
<td>Crushing stone, hammerstone</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>Daun 111</td>
<td>Gadani red flint, limnoquartzite, limestone</td>
<td>Small tested blocks; prismatic cores</td>
<td>Flake(let)s</td>
<td>Net-weight</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>Daun 112</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Daun 113</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Daun 114</td>
<td>Gadani red flint</td>
<td>None</td>
<td>Primary flakes</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 115</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 116</td>
<td>Chert</td>
<td>None</td>
<td>Flakelet</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 117</td>
<td>Gadani red flint (striped), quartzite</td>
<td>Prismatic and polyhedral cores</td>
<td>Perforators, flakes</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 118</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Not dated</td>
</tr>
<tr>
<td>Daun 119</td>
<td>Gadani red flint, chert, limnoquartzite, sandstone, limestone</td>
<td>Tested blocks</td>
<td>Side scraper, blade, flakelets</td>
<td>Crushing stone</td>
<td>None</td>
<td>4</td>
</tr>
</tbody>
</table>
The shell middens of the Bay of Daun

Fig. 6. Daun: shell midden 1 from the north (photograph P. Biagi)

Fig. 7. Daun: group of querns in shell midden 1 (photograph P. Biagi)
with parallel detachments (Fig. 11), most probably obtained by pressure (Inizan, 2012) (Fig. 12: 1, 2),debitage flakes, parallel-sided micro-bladelets (Fig. 12:5–7) and retouched tools (Table 2). Among the latter particularly important are one isosceles trapeze obtained with the microburin technique from Daun 1 (Fig. 12:3), and one lunate, from Daun 10 (Fig. 12:4).

The discovery of geometric microliths raises the problem of the typological variability, function and chronology of these tools. Different classes of isosceles trapezes have been recovered from the Mesolithic sites of the Mulri Hills, east of Karachi (Biagi, 2003–2004), and the Thar Desert dunes of Upper Sindh (Biagi, 2008a:fig.4); while “horned” trapezes, recalling central Asian, Early Neolithic types (Masson, 1996:fig.5; Brunet, 1998; 2012), come from the a ceramic Neolithic layers of Mehrgarh (Lechevallier, 2003; Jarrige, 2007–2008; Inizan, 2012). Lunates, which can be subdivided into several classes according to their typology, dimension and retouch, make their appearance in Sindh around the end of the Paleolithic (Biagi, 2011a) and continued to be in use at least until the Neolithic. Although the

**Fig. 8.** Daun: shell midden 1: distribution map of crushing stones (circles), and flint core (square) (drawing C. Franco)

**Fig. 9.** Daun. shell midden 10 between volcanic outcrops, from the north-west (photograph P. Biagi)
function of the geometric tools from the Daun sites is still undefined, lunates have already been recorded from other 8th and 7th millennium BP shell middens along the Red Sea coast (Bar-Yosef Mayer and Beyin, 2009:114).

The coarse stone tools are represented mainly by crushing stones, which find parallels from many shell middens located along the coast of the Sultanate of Oman, like Saruq and Khor Milkh, for instance, where they are suggested to have been employed for opening T. palustris shells (Uerpmann and Uerpman, 2003:115). Concentrations of crushing stones have been noticed only at Daun 1, where they represent the commonest tools of this important site, suggesting that it acted as a specialised working place for the processing of mangrove shells (Clarke, 2009).

Only a few sites dated to the 5th millennium BP yielded chipped and coarse stone tools (Fig. 13:3, 4), among which is Daun 3 from which comes a retouched blade of exotic chert with use wear traces, from (Biagi, 2004:fig.8).

The evidence for fishing is suggested by one plaquette chipped from limestone from Daun 111 (Fig. 13:1), one isolated net-sinker from a notched
<table>
<thead>
<tr>
<th>Site number</th>
<th>Coordinates</th>
<th>Measures m.</th>
<th>Extension mq.</th>
<th>Lab. Number</th>
<th>Sample</th>
<th>¹⁴C date BP</th>
<th>Δ¹³C (‰)</th>
<th>Cluster</th>
<th>Geo Groups</th>
<th>Cultural Attribution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daun 1</td>
<td>25°00'14.34&quot; N, 66°42'39.82&quot; E</td>
<td>121.00</td>
<td>837.00</td>
<td>GrN-26368</td>
<td>T. palustris</td>
<td>6380±40</td>
<td>-3.08</td>
<td>1</td>
<td>4</td>
<td>Neolithic</td>
<td>Biagi, 2004: 16</td>
</tr>
<tr>
<td>Daun 2</td>
<td>25°00'14.00&quot; N, 66°42'47.00&quot; E</td>
<td>25.30</td>
<td>23.80</td>
<td>Undated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Undated</td>
<td>2</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Daun 3</td>
<td>25°00'26.55&quot; N, 66°43'04.67&quot; E</td>
<td>250.00</td>
<td>3560.00</td>
<td>GrN-27954</td>
<td>T. palustris</td>
<td>4100±30</td>
<td>-4.49</td>
<td>4</td>
<td>5</td>
<td>Final Indus</td>
<td>Biagi, 2004: 16</td>
</tr>
<tr>
<td>Daun 4</td>
<td>24°59'18.07&quot; N, 66°42'29.46&quot; E</td>
<td>14.00</td>
<td>13.60</td>
<td>GrN-28800</td>
<td>Ostreidae</td>
<td>4800±35</td>
<td>-5.30</td>
<td>3</td>
<td>1</td>
<td>Mature Indus</td>
<td>Biagi, 2004: 16</td>
</tr>
<tr>
<td>Daun 5</td>
<td>24°59'18.46&quot; N, 66°42'28.53&quot; E</td>
<td>37.40</td>
<td>104.00</td>
<td>GrN-28801</td>
<td>T. palustris</td>
<td>4900±35</td>
<td>-5.44</td>
<td>3</td>
<td>1</td>
<td>Mature Indus</td>
<td>Biagi, 2004: 16</td>
</tr>
<tr>
<td>Daun 6</td>
<td>24°59'20.49&quot; N, 66°42'31.38&quot; E</td>
<td>13.20</td>
<td>13.30</td>
<td>GrN-28802</td>
<td>T. palustris</td>
<td>5370±35</td>
<td>+1.27</td>
<td>2</td>
<td>1</td>
<td>Amri/Nal</td>
<td></td>
</tr>
<tr>
<td>Daun 7</td>
<td>24°59'25.00&quot; N, 66°42'33.00&quot; E</td>
<td>25.20</td>
<td>46.50</td>
<td>Undated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Undated</td>
<td>1</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Daun 8</td>
<td>24°59'25.99&quot; N, 66°42'33.00&quot; E</td>
<td>15.70</td>
<td>19.60</td>
<td>GrN-28803</td>
<td>Mactridae</td>
<td>4540±35</td>
<td>-5.16</td>
<td>3</td>
<td>1</td>
<td>Mature Indus</td>
<td>Biagi, 2004: 16</td>
</tr>
<tr>
<td>Daun 9</td>
<td>24°59'25.00&quot; N, 66°42'35.00&quot; E</td>
<td>23.70</td>
<td>44.60</td>
<td>Undated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Undated</td>
<td>1</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Daun 10</td>
<td>25°00'12.61&quot; N, 66°42'45.14&quot; E</td>
<td>83.10</td>
<td>254.00</td>
<td>GrN-31489</td>
<td>T. palustris</td>
<td>6305±45</td>
<td>-3.97</td>
<td>1</td>
<td>4</td>
<td>Neolithic</td>
<td>Biagi, 2011: Fig. 1</td>
</tr>
<tr>
<td>Daun 100</td>
<td>24°59'37.19&quot; N, 66°42'19.35&quot; E</td>
<td>16.60</td>
<td>18.00</td>
<td>Undated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Undated</td>
<td>2</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Daun 101</td>
<td>24°59'37.03&quot; N, 66°42'19.86&quot; E</td>
<td>15.70</td>
<td>11.70</td>
<td>GrN-31490</td>
<td>T. palustris</td>
<td>4470±30</td>
<td>-5.49</td>
<td>3</td>
<td>2</td>
<td>Mature Indus</td>
<td>Biagi, 2011: Fig. 1</td>
</tr>
<tr>
<td>Daun 102</td>
<td>24°59'36.54&quot; N, 66°42'21.03&quot; E</td>
<td>54.70</td>
<td>140.00</td>
<td>GrN-32117</td>
<td>T. palustris</td>
<td>4590±35</td>
<td>-5.96</td>
<td>3</td>
<td>2</td>
<td>Mature Indus</td>
<td>Biagi, 2011: Fig. 1</td>
</tr>
<tr>
<td>Daun 103</td>
<td>24°59'35.37&quot; N, 66°42'21.77&quot; E</td>
<td>27.80</td>
<td>50.60</td>
<td>GrN-31491</td>
<td>T. palustris</td>
<td>4435±40</td>
<td>-5.37</td>
<td>3</td>
<td>2</td>
<td>Mature Indus</td>
<td>Biagi, 2011: Fig. 1</td>
</tr>
<tr>
<td>Daun 104</td>
<td>24°59'35.01&quot; N, 66°42'21.63&quot; E</td>
<td>17.80</td>
<td>16.70</td>
<td>GrN-32118</td>
<td>T. palustris</td>
<td>4470±35</td>
<td>-610</td>
<td>3</td>
<td>2</td>
<td>Mature Indus</td>
<td>Biagi, 2011: Fig. 1</td>
</tr>
<tr>
<td>Daun 105</td>
<td>24°59'34.64&quot; N, 66°42'21.60&quot; E</td>
<td>15.00</td>
<td>15.60</td>
<td>GrN-31643</td>
<td>T. telescopium</td>
<td>4470±40</td>
<td>-5.09</td>
<td>3</td>
<td>2</td>
<td>Mature Indus</td>
<td></td>
</tr>
<tr>
<td>Daun 106</td>
<td>24°59'34.10&quot; N, 66°42'20.96&quot; E</td>
<td>24.30</td>
<td>30.90</td>
<td>Undated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Undated</td>
<td>2</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Daun 107</td>
<td>24°59'33.04&quot; N, 66°42'21.72&quot; E</td>
<td>6.95</td>
<td>3.10</td>
<td>Undated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Undated</td>
<td>2</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Daun 108</td>
<td>24°59'28.97&quot; N, 66°42'23.69&quot; E</td>
<td>12.40</td>
<td>12.20</td>
<td>Undated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Undated</td>
<td>2</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Daun 109</td>
<td>24°59'20.84&quot; N, 66°42'20.52&quot; E</td>
<td>N</td>
<td>N</td>
<td>Undated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Quartzite scraper</td>
<td>N</td>
<td>Neolithic</td>
<td>Biagi, 2011: Fig. 1</td>
</tr>
<tr>
<td>Daun 110</td>
<td>25°00'00.66&quot; N, 66°42'21.20&quot; E</td>
<td>87.30</td>
<td>469.00</td>
<td>GrN-31492</td>
<td>T. palustris</td>
<td>6690±40</td>
<td>-3.44</td>
<td>1</td>
<td>3</td>
<td>Neolithic</td>
<td></td>
</tr>
<tr>
<td>Daun 111</td>
<td>25°00'00.17&quot; N, 66°42'25.67&quot; E</td>
<td>26.10</td>
<td>49.00</td>
<td>GrN-31493</td>
<td>T. palustris</td>
<td>6590±45</td>
<td>-3.57</td>
<td>1</td>
<td>3</td>
<td>Mature Indus</td>
<td></td>
</tr>
<tr>
<td>Daun 112</td>
<td>25°00'00.52&quot; N, 66°42'27.87&quot; E</td>
<td>20.80</td>
<td>27.60</td>
<td>GrN-32462</td>
<td>T. palustris</td>
<td>4625±30</td>
<td>-4.95</td>
<td>3</td>
<td>3</td>
<td>Mature Indus</td>
<td></td>
</tr>
<tr>
<td>Daun 113</td>
<td>25°00'00.42&quot; N, 66°42'22.96&quot; E</td>
<td>21.40</td>
<td>30.20</td>
<td>GrN-32463</td>
<td>T. palustris</td>
<td>4455±30</td>
<td>-5.44</td>
<td>3</td>
<td>3</td>
<td>Mature Indus</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Daun: main characteristics of the sites and radiocarbon dates
beach pebble, collected some 20 m east of Daun 111 (Fig. 13:2), and two larger net-weights from Daun 3 and 5.

Very small potsherds, mainly prehistoric, were collected from a few sites (see Table 2).

**THE RADIOCARBON RESULTS**

According to the radiocarbon results, four shell middens developed during the 7th millennium BP. Daun 110 is the oldest site (GrN-31492: 6690±40 BP), followed by Daun 111, some 100 m to the east (GrN-31493: 6590±45 BP), while Daun 1 and Daun 10, roughly 600 m to the north-west, are slightly more recent (GrN-26368: 6380±40 BP and GrN-31489: 6305±45 BP respectively) (cluster 1). The cluster of Neolithic dates is followed by a gap of some one thousand years, corresponding to the Chalcolithic, during which only Daun 6 was settled (GrN-28802: 5370±35 BP) (cluster 2).

The radiocarbon dates from Daun 5 and Daun 4 (GrN-28801: 4900±35 BP and GrN-28800: 4900±35 BP).
Fig. 13. Daun: coarse stone tools. Retouched limestone plaquette from Daun 111 (1), limestone net-sinker from east of Daun 111 (2), crushing sandstone from Daun 10 (3) and limestone hammerstone from Daun 119 (4) (scale in cm) (drawings E. Starnini)
4800±35 BP, respectively) are followed by eight other dates (Daun 112, 102, 8, 113, 101, 104, 105 and 103) all around the middle of the same millennium (cluster 3). Daun 119 and Daun 3 form another small cluster (4) slightly more recent than cluster 3 (GrN-31644: 4165±25 BP and GrN-27945: 4100±30 BP, respectively) (Fig. 14).

**Variations in the $\delta^{13}$C values**

The $\delta^{13}$C values of the samples show quite a distinctive pattern. Cluster 1 yielded values ranging from $-3.44$ to $-3.97$, characteristic of a mangrove environment. Daun 6, with a much higher value ($+1.27$), should indicate its non-mangrove provenance (cluster 2). The following exploitation episodes (cluster 3) show some depletion in the $\delta^{13}$C values, represented by another “low” peak ranging from $-4.95$ to $-6.10$ followed by a slight enrichment at Daun 119 ($-4.05$) and Daun 3 ($-4.49$) (cluster 4).

The curve of the above $\delta^{13}$C values is believed to show a well defined climatic and biochemical events. Given that “carbon isotope ratios of shell carbonates have been considered a good indicator of the isotopic composition of inorganic carbon in seawater” (Lin et al., 1991: 339), various local and regional alteration processes, among which are changes in precipitation, hydrological regimes and coastline variations, are to be considered. Thus a preliminary interpretation of the events that took place around the bay can be put forward, given that most results (ex-
cept for Daun 4, 8 and 105) have been obtained from *T. palustris* gastropods that are considered to be reliable climatic indicators:

1) As reported above the four dates of cluster 1 show low δ¹³C values (average –3.515). If we compare them with the δ¹³C values from other mangrove swamps (Lin et al., 1991), they suggest that mangroves were already present at Daun around the early-mid 7th millennium BP, when the sea level line was probably slightly higher than that of the present (Lambeck, 1996:55);

2) The higher δ¹³C value of Daun 6, and the absence of any further 6th millennium archaeological evidence, might suggest that mangroves retreated during the Chalcolithic;

3) The 5th millennium BP assays show a general depletion in δ¹³C values, which is consistent with a typical mangrove environment. The fact that low values match with the majority of sites shows that mangroves had re-established around Daun Bay in this period, and were exploited by Mature Indus communities. Mid 5th millennium BP dates from marine shells associated with potsherds are reported from Pasni (Makran) by Sanlaville et al. (1991:13), suggesting the presence of other Bronze Age sites in the region;

4) The dates from Daun 119 and 3 show that the mangrove swamps retreated again during the late 5th millennium BP. They probably mark an arid episode, recorded also from the northern and eastern Arabian Sea (Sarkar et al., 2000; Staubwasser et al., 2003), and the Thar Desert lakes (Saifuddin and Iqbaluddin, 2000; Kajale et al., 2004:90), corresponding to the decline of the Indus civilization (Madella and Fuller, 2006:1298). Sanlaville et al. (1991:13) report similar dates from Pasni in Makran, obtained from marine shells. The absence of other late 5th millennium results suggests that, during this period, mangroves were confined to the eastern part of the bay, where the current morphology favours a prolonged persistence of wetter environments. The fact that the δ¹³C values of cluster 4 are higher than the average preceding ones might point to another clue in this regard;

Although the above interpretation is disputable due to possible alteration effects in the tested samples, a few more problems are considered to be relevant. They are:

1) The 6th millennium BP peak is represented by only one date. If compared with those of the arid episodes recorded from the Arabian Sea and lake-cores (Von Rad et al., 1999; Ajithprasad, 2004; Staubwasser and Weiss, 2006), we argue that mangrove swamps effectively retreated during this period;

2) The variability of the δ¹³C values of the above samples might depend on both specific/individual differences, and local/region climatic effects among which the most important are:

   (a) Dimension, individual age and feeding habits of the samples (Pape et al., 2008);

   (b) Monsoon cycle-tied climatic variations (Shankar et al., 2002; Loschnigg et al., 2003; Wright et al., 2008), that may significantly alter the δ¹³C values (Bouillon et al., 2004);

   (c) Riverine/precipitation regime (Jain and Tandon, 2003), shoreline (Lambeck, 1996) and specific hydrological changes (Raikes, 1967; Meadows and Meadows, 1999) eventually causing undetectable hard-water effects (Badgley et al., 1972; Banse, 1984);

   (d) Environmental conditions, among which are mangrove swamp extensions, influencing, for instance, both organic litter decomposition and light intensity (Snedaker, 1984; Ahmed, 1999);

3) Fourteen of the above seventeen δ¹³C values are from *T. palustris* gastropods. The results were then compared with typical mangrove and non-mangrove values from different species recovered from other mangrove environments around the world, especially Florida (Lin et al., 1991). This might mask possible inter-specific local and/or regional differences. Regional and seasonal variability might even complicate the problem, as they are difficult to recognize on the basis of the available data.

### Calibration problems

The problems related with the calibration of the radiocarbon dates of the prehistoric shell middens of the north-western Arabian Sea have been long debated with contrasting results (Uerpmann, 1990; Biagi, 1994; Uerpmann and Uerpmann, 2003; Saliège et al., 2005). As already pointed out for the Oman sites, the absence of data from the northern coast of the Arabian Sea makes the choice of the appropriate calibration curve of the Daun sites rather problematic for two main reasons:

1) As the δ¹³C values show, most samples
Fig. 15. Daun: chronological distribution of the calibrated BC results according to the three models described in the text (a-c) (drawing T. Fantuzzi)
come from mangrove environments. This cannot exclude possible alteration effects among which are hard-water, freshwater, and organic litter decomposition, as well as other specific/individual difference as, for example, age and feeding habits of the individuals tested (Pape et al., 2008).

2) There is no specific datum such as deep-water upwelling and/or oceanic reservoir effect that may have influenced the Daun sites calibration. The nearest data come from a core 300 km north of port Okha, with a regional mean of 229±27 14C yrs (Reimer and Reimer, 2001) and from Port Okha itself, with a value of 163±30 14C yrs (Dutta et al., 2001). They were chosen to construct two of the interpretative models presented in this paper, although fixed and constant values always need to be treated with caution given that both local and decadal (or even inter-year) variations, that have proven to be relevant in modern samples (Dutta et al., 2001), may be unrecognised to some extent.

Following the above considerations, we have preferred to present both the “raw” uncalibrated results (Table 2; Fig. 14), and three different calibration models: 1) the sequence after calibration against the 229±27 reservoir value from the regional mean published by Reimer and Reimer (2001), 2) the 163±30 reservoir effect from Port Okha (Dutta et al., 2001), and 3) the Marine 09 Calibration Curve, without reservoir effect (Fig. 15).

The general distribution of the calibrated dates looks unvaried as expected, although mainly in the diagrams of Fig. 15 a) and b) the shell exploitation peak matches well with the Marine Indus civilization period.

DISCUSSION

The Daun radiocarbon dates suggest that mangrove environments were present around the bay just before the mid 7th millennium BP, and were exploited by the Neolithic inhabitants for shellfish consumption. Their exploitation ceased during the 6th millennium BP, the only exception being that of Daun 6, whose high δ13C value shows a non-mangrove origin. This result allows us to hypothesize that mangrove swamps retreated or disappeared (?) from the area during the Chalcolithic Amri/Nal cultures, reinforcing the impression of a Mid Holocene dry episode already known from other parts of Eurasia (Anderson et al., 2007:8), among which are the Indus-Sarasvati region (Brooks, 2006:38), and the Thar Desert lakes of Rajasthan (Deotare et al., 2004:20).

Mangrove swamps spread again during the 5th millennium BP, when a peak in T. palustris exploitation is marked by a cluster of dates with depleted δ13C values, typical for mangrove environments. Mangrove swamps retreated again, perhaps during another dry episode, in the late 5th millennium BP, when only two shell mounds were settled east of the lagoon, not far from the present-day shoreline.

The suggested cycles of mangrove exhaustion and rejuvenation seem to match well with the monsoon cycles, which show a general weakening around 6000–5500 BP (Morrill et al., 2003). Arid periods have been recorded from a few Rajasthan and Gujarat lake cores, in particular Nal Sarovar, where dryer episodes occurred during the early 7th and the 6th millennia BP, and general arid conditions before the end of the 5th millennium BP (Ajithprasad, 2004). Furthermore global-scaled arid/cooling episodes alternated between 5200 and 4200 BP, and possibly also 6000 BP (Staubwasser and Weiss, 2006). They are intriguing for the different episodes of mangrove exhaustion and rejuvenation at Daun.

The climatic and morphological changes of Las Bela coastal zone can be compared to those that took place along the coast of Oman during the Middle Holocene (Lézine, 2009), where variations in the littoral Arabian Sea environments have been recorded along formerly ancient lagoons rich in mangroves, at present dissected basins, which had been seasonally settled during most favourable periods by different human groups (Charpentier et al., 2000; 2012; Lézine et al., 2002; Martin, 2002, Cleuziou, 2004:134).

As for other parts of the world the systematic radiocarbon dating of mangrove shell samples around the Bay of Daun has shown that, also in this region, shell midden are not exclusively a stone age phenomenon (Andersen, 2007). Shell gathering took place in different periods according to the availability of the mangrove resources, with two distinct picks of exploitation during the Neolithic and the Bronze Age, as part of different cycles of prehistoric subsistence.
CONCLUSION

According to the radiocarbon results, human groups began to settle along the coasts of Daun Bay during the first half of the 7th millennium BP (Fig. 14). Similar dates come from other sites distributed along the shores of the Arabian Peninsula and the Gulf (Biagi, 2008b; Boivin and Fuller, 2009:fig.5; Uerpmann and Uerpmann, 2003:table 2.1), which were settled during the middle Holocene, when the sea-level stabilised along a line some 0.5–3m higher than that of the present (see for instance Gupta, 1972; Sanlaville, 1992; Bernier et al., 1995; Lambeck, 1996).

The research under-way along the coasts of Las Bela and Lower Sindh led to the discovery of a few 8th millennium, and several 7th millennium BP shell middens along the shores of Lake Siranda (Balochistan) (Biagi et al., in press a; in press b), the Tharro and Makli Hills (Lower Sindh) (Biagi, 2010; 2011b). These discoveries raise important questions regarding the mid-Holocene peopling of this part of the Arabian Sea, although we have to consider that “the distribution of shell mounds is probably a poor indicator of the distribution of coastal population” (Bailey and Milner, 2002:6), and that people moved across the Gulf (Cleuziou, 2004:136; Carter, 2008) and the Arabian Sea, exploited different environments, and developed specific activities according to the different locations they inhabited, as they still do nowadays (Potts, 1990: 57; Costa, 1991; Lancaster and Lancaster, 1992; Nadjmabadi, 1992).

The most important questions to be answered regard 1) the problems related with the earliest seafaring along the northern shores of the Arabian Sea (Biagi, in press), 2) the changes that took place in the coastal environment during the Holocene, and the Middle Atlantic period in particular (Kennett and Kennett, 2006:76; Bailey et al., 2007:133), and 3) the relationships between coastal shell middens and Neolithic settlements of the interior (Khan, 1979b).

1) A small scatter of Ostreidae along the southern edge of the Tharro Hills (Gujo, Lower Sindh), radiocarbon-dated to 6910±60 BP (THR2: GrN-32119), shows that the “islet” was reached by boat around the beginning of the 7th millennium BP (Biagi, 2010:fig.16). The Makli Hills were settled a few centuries later, as shown by a scatter of T. pa-

Fig. 16. Distribution map of the radiocarbon-dated 8th and 7th millennium BP shell middens of Las Bela and Lower Sindh: 1) Daun, 2) Lake Siranda, 3) Tharro Hills, 4) Makli Hills (drawing P. Biagi)
recently criticised (Petrie et al., 2010). Nevertheless the absolute dates obtained from the bottom of the pollen column sampled from this latter site shows that Neolithic Mehrgarh started to be settled at the beginning of the 8th millennium BP as shown by a conventional date of 7928±126 uncal BP (R-2290: Costantini, 2007–2008:171). The inhabitants of Mehrgarh undoubtedly entertained relationships with the northern coasts of the Arabian Sea since the beginning of the Neolithic, as indicated by the great quantity of marine shell ornaments in the aceramic Neolithic graves goods (Ray, 2003:33; Jarrige, 2004:48). In this respect it is important to point out that the new radiocarbon results from Lake Siranda show that the shores of this ancient lagoon were already settled during the last two centuries of the 8th millennium BP (Fig. 16), remarking the complexity of the oceanic and terrestrial movements that shaped the geomorphology of the region since the beginning of the Holocene (Bailey and Parkington, 1988).

At Daun, the almost absence of 6th millennium shell midden contrasts with the high number of 5th millennium BP stations, suggesting that climatic and environmental changes affected the peopling of this part of the coast of Las Bela during the above periods. These data point out the importance of the freshwater resources and monsoon precipitations for the communities that temporarily settled in the area to exploit the rich mangrove environments available along the shores of the bay (Ewel et al., 1998) during periods of increasing productivity of the oceanic coastal micro-environments (Erlandson and Fitzpatrick, 2006).

Acknowledgments

Research at Las Bela has been made possible thanks to the financial support of the Italian Ministry of Foreign Affairs (MAE, Rome), EURAL Gnudi (Rovato, Brescia), and Ca’ Foscari University archaeology funds.

The authors are very grateful to Professor A.H. Bouk (Department of Computer Science, Balochistan University, Quetta), for his company, help and support during the 2008 fieldwork season. Special thanks are due to Professor A.R. Khan (Department of Geography, Karachi University) without whose advise the Daun sites would have never been discovered, and Dr. M. Spataro (British Museum, UK) who took part in the 2000 and 2004 exploratory visits, and Professor P.J. Reimer (Queen’s University, Belfast) for the useful discussions on isotopic fractionation.

REFERENCES


BROOKS N. 2006. Cultural responses to aridity in the Middle Holocene and increased social complexity. *Quaternary International* 151, 29–49.


MORRILL C., OVERPECK J.T., COLE J.E. 2003. A synthesis of abrupt changes in the last Asian summer monsoon since the last deglaciation. The Holocene 13(4), 465–476.


STEIN A. 1931. An Archaeological Tour to Gedrosia. Cosmo, Delhi.


