The angular dependences of the polarized Raman intensity of A(g), B-1g, B-2g, and B-3g modes have been preliminary investigated on a model fiber sample of ultra-high molecular weight polyethylene (UHMWPE) in order to retrieve the Raman tensor elements, i.e. the intrinsic parameters governing the vibrational behavior of the orthorhombic structure of polyethylene. Based on this Raman analysis, a method is proposed for determining unknown crystallographic orientation patterns in UHMWPE biomedical components concurrently with the orientation distribution functions for orthorhombic lamellae. An application of the method is shown, in which we quantitatively examined the molecular orientation patterns developed on the surface of four in vivo exposed UHMWPE acetabular cups vs. an unused cup. Interesting findings were: (i) a clear bimodal distribution of orientation angles was observed on worn surfaces; and (ii) a definite and systematic increase in both molecular orientation and crystallinity in main wear zones vs. non-wear zones was found in all retrieved acetabular cups. The present crystallographic analysis is an extension of our previous Raman studies of UHMWPE acetabular cups related to assessments of oxidation and residual strain and suggests a viable path to track back wear-history information from the surface of UHMWPE, thus unfolding the in vivo kinematics of the bearing surfaces in hip joints on the microscopic scale. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Raman tensor analysis of ultra-high molecular weight polyethylene and its application to study retrieved hip joint components

Puppulin, Leonardo;Pezzotti, Giuseppe
2010-01-01

Abstract

The angular dependences of the polarized Raman intensity of A(g), B-1g, B-2g, and B-3g modes have been preliminary investigated on a model fiber sample of ultra-high molecular weight polyethylene (UHMWPE) in order to retrieve the Raman tensor elements, i.e. the intrinsic parameters governing the vibrational behavior of the orthorhombic structure of polyethylene. Based on this Raman analysis, a method is proposed for determining unknown crystallographic orientation patterns in UHMWPE biomedical components concurrently with the orientation distribution functions for orthorhombic lamellae. An application of the method is shown, in which we quantitatively examined the molecular orientation patterns developed on the surface of four in vivo exposed UHMWPE acetabular cups vs. an unused cup. Interesting findings were: (i) a clear bimodal distribution of orientation angles was observed on worn surfaces; and (ii) a definite and systematic increase in both molecular orientation and crystallinity in main wear zones vs. non-wear zones was found in all retrieved acetabular cups. The present crystallographic analysis is an extension of our previous Raman studies of UHMWPE acetabular cups related to assessments of oxidation and residual strain and suggests a viable path to track back wear-history information from the surface of UHMWPE, thus unfolding the in vivo kinematics of the bearing surfaces in hip joints on the microscopic scale. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
2010
6
File in questo prodotto:
File Dimensione Formato  
Raman_tensor_analysis_of_ultra-high_molecular_weight_polyethylene_and_its_application_to_study_retri.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5018784
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact