Introduction Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. Objectives To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. Methods A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. Results AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•−) including peroxynitrite (ONOO−) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). Conclusion This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.

Silver nitroprusside as an efficient chemodynamic therapeutic agent and a peroxynitrite nanogenerator for targeted cancer therapies

Asif, Kanwal;Adeel, Muhammad;Rahman, Md Mahbubur;Sfriso, Andrea Augusto;Rizzolio, Flavio
;
2023-01-01

Abstract

Introduction Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. Objectives To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. Methods A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. Results AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•−) including peroxynitrite (ONOO−) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). Conclusion This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.
2023
in press
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5021117
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact